Python数据分析[4] - 数据整理 Data Wrangling

多维Index

data = pd.Series(np.random.randn(9),
                 index = [list('aaabbbccc'), [int(i) for i in list('123123123')]])

data
Out[305]: 
a  1   -1.241109
   2   -0.773149
   3   -0.768199
b  1    0.033064
   2   -0.572366
   3   -0.058906
c  1    0.380905
   2    0.191739
   3   -1.165568
dtype: float64

data['a']
Out[306]: 
1   -1.241109
2   -0.773149
3   -0.768199
dtype: float64

data[1]
Out[307]: -0.7731491959372425

data['a'][1]
Out[311]: -1.2411092607532435

data.loc[:,2]
Out[312]: 
a   -0.773149
b   -0.572366
c    0.191739
dtype: float64

data.loc['a', 1]
Out[313]: -1.2411092607532435

Columns和Rows都可以创建多层Index

data = DataFrame(np.arange(12).reshape((4, 3)),
                 index = [list('aabb'), [1, 2, 1, 2]],
                 columns = [['ohio', 'ohio', 'colorado'],
                            ['green', 'red', 'green']])

data
Out[316]: 
     ohio     colorado
    green red    green
a 1     0   1        2
  2     3   4        5
b 1     6   7        8
  2     9  10       11

每层的index也可以拥有自己的名字

data.index.names
Out[318]: FrozenList([None, None])

data.index.names = ['key1', 'key2']

data.columns.names
Out[320]: FrozenList([None, None])

data.columns.names = ['state', 'color']

data
Out[322]: 
state      ohio     colorado
color     green red    green
key1 key2                   
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

Index排序

data.sort_index(level = 0)
Out[325]: 
state      ohio     colorado
color     green red    green
key1 key2                   
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

data.sort_index(level = 1)
Out[326]: 
state      ohio     colorado
color     green red    green
key1 key2                   
a    1        0   1        2
b    1        6   7        8
a    2        3   4        5
b    2        9  10       11

根据Level聚合

data.sum(level = 'key2')
Out[327]: 
state  ohio     colorado
color green red    green
key2                    
1         6   8       10
2        12  14       16

data.sum(level = 'state', axis = 1)
Out[329]: 
state      ohio  colorado
key1 key2                
a    1        1         2
     2        7         5
b    1       13         8
     2       19        11

表连接

df1 = DataFrame({'k1': list('ababcbaba'), 'v1': range(9)})
df2 = DataFrame({'k2': list('abd'), 'v2': range(3)})

pd.merge(df1, df2, how = 'left', left_on = 'k1', right_on = 'k2')
df1 = DataFrame({'k': list('ababcbaba'), 'v1': range(9)})
df2 = DataFrame({'k': list('abd'), 'v2': range(3)})

pd.merge(df1, df2, how = 'inner', on = 'k')
Out[343]: 
   k  v1  v2
0  a   0   0
1  a   2   0
2  a   6   0
3  a   8   0
4  b   1   1
5  b   3   1
6  b   5   1
7  b   7   1
df1 = DataFrame({'k': list('ababcbaba'), 'v': range(9)})
df2 = DataFrame({'k': list('abd'), 'v': range(3)})

pd.merge(df1, df2, how = 'inner', on = 'k', suffixes = ('_left', '_right'))
Out[347]: 
   k  v_left  v_right
0  a       0        0
1  a       2        0
2  a       6        0
3  a       8        0
4  b       1        1
5  b       3        1
6  b       5        1
7  b       7        1
表连接其他parameter

表拼接

df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'],
                   columns=['one', 'two'])
df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
                   columns=['three', 'four'])

df1
Out[349]: 
   one  two
a    0    1
b    2    3
c    4    5

df2
Out[350]: 
   three  four
a      5     6
c      7     8

pd.concat([df1, df2], axis = 1, keys = ['level1', 'level2'])
Out[351]: 
  level1     level2     
     one two  three four
a      0   1    5.0  6.0
b      2   3    NaN  NaN
c      4   5    7.0  8.0
表拼接 parameter 1

表拼接 parameter 2

数据透视&逆透视

Index的行列转换

data = pd.DataFrame(np.arange(6).reshape((2, 3)),
                    index=pd.Index(['Ohio', 'Colorado'], name='state'), 
                    columns=pd.Index(['one', 'two', 'three'], name='number'))

data
Out[354]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5

透视与逆透视
melt方法和pivot方法

data = DataFrame({'k1':list('aaabbbccc'),
                  'k2':list('xyzxyzxyz'),
                  'v':range(9)})

data
Out[360]: 
  k1 k2  v
0  a  x  0
1  a  y  1
2  a  z  2
3  b  x  3
4  b  y  4
5  b  z  5
6  c  x  6
7  c  y  7
8  c  z  8

data.pivot('k1', 'k2', 'v')
Out[361]: 
k2  x  y  z
k1         
a   0  1  2
b   3  4  5
c   6  7  8


result.reset_index()
result.melt(id_vars = ['k1'], value_vars=['x', 'y', 'z'])
Out[398]: 
  k1 k2  value
0  a  x      0
1  b  x      3
2  c  x      6
3  a  y      1
4  b  y      4
5  c  y      7
6  a  z      2
7  b  z      5
8  c  z      8
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352