R语言 | 使用ggplot绘制柱状图,在柱子中显示数值和显著性

原文链接:使用ggplot绘制柱状图,在柱子中显示数值和显著性

本期教程

获得本期教程示例数据,后台回复关键词:20240628。(PS:在社群中,可获得往期和未来教程所有数据和代码)

往期教程部分内容













写在前面

基于ggplot绘制柱状图,小技巧,很基础的图形。但是,越到后面,会发现,越是基础的图形,我们使用的频率越高。今天的教程是基于发芽指数来绘制,我们模拟一个发芽数和天数,计算出发芽指数。

代码

##'@在柱状图中显示数字
##'@2024.06.28
##'@
##'@小杜的生信笔记

library(ggplot2)
library(dplyr)
library(tidyr)
library(ggplot2)
library(agricolae)

setwd("D:\\BioinfoFile\\小杜的生信笔记\\2024\\20240628_柱状图中显示数据")
##'@此次数据基于种子发芽指数计算公式进行,数据具有随机性,不具有任何意义。
##'@加载数据
data <- read.csv("20240628_inputdata.csv",header = T)

data

相关计算代码

## 转换数据
long_data <- data %>%
  pivot_longer(cols = starts_with("germinated"), names_to = "replicate", values_to = "germinated")
long_data
##计算活力指数
germination_index <- long_data %>%
  group_by(treatment, day) %>%
  summarise(GI = sum(germinated / day)) %>%
  ungroup()

#'@计算各个处理的平均数和标准差
summary_gi <- germination_index %>%
  group_by(treatment) %>%
  summarise(mean_GI = mean(GI), sd_GI = sd(GI))

#'@单因素方差分析
anova_result <- aov(GI ~ treatment + day, data = germination_index)
summary(anova_result)

#'@进行Tukey HSD检验
tukey_result <- HSD.test(anova_result, "treatment", group = TRUE)
print(tukey_result)


# 提取 Tukey HSD 结果中的字母标记
groups <- tukey_result$groups
df_letters <- data.frame(sample = rownames(groups), letters = groups$groups)
##'@修改名称
colnames(df_letters) <- c("treatment","letters")

# 合并均值和字母标记
df_data <- merge(summary_gi, df_letters, by = "treatment")

绘图

ggplot(df_data, aes(x = treatment, y = mean_GI, fill = treatment)) +
  geom_bar(stat = "identity", position = "dodge", color = "black", size = 0.5) +
  ##'@误差线
  geom_errorbar(aes(ymin = mean_GI - sd_GI, ymax = mean_GI + sd_GI), width = 0.15, ## 宽度
                size = 1  ##字体大小
                ) +
  ##'@显示数字
  geom_text(aes(x = treatment, y = mean_GI + sd_GI + 0.5,  ## “+0.5”显示的高度
                label = round(mean_GI, 2)),   ### "round(mean_GI, 2))",其中2,表示数字显示的小数点位数
            size = 5,
            color = 'black') +
  ##'@显示显著性
  geom_text(aes(x = treatment, y = mean_GI + sd_GI + 1.3, label = letters), size = 6, color = "red") +
  theme_bw()+
  scale_fill_manual(values = c("#1f78b4", "#ff7f00", "#4daf4a")) +
  labs(x = NULL, y = "Germination Index")+
  theme(#axis.line = element_line(size = 1),  ## 粗细
    text=element_text(#family = "sans",
      colour ="black",size = 10),
    axis.text.x = element_text(color = "black", size = 12),
    axis.text.y = element_text(color = "black",size = 11),
    axis.ticks = element_line(colour = "black"),
    strip.text = element_text(color = "black",size = 10),
    axis.title = element_text(color = "black",size = 12), ##坐标轴字体大小
    legend.position = "none",
    strip.background = element_blank()
  )

ggsave("20240608_柱状图-显示数字.pdf",width = 6, height = 4)

获得本期教程示例数据,后台回复关键词:20240628。(PS:在社群中,可获得往期和未来教程所有数据和代码)

若我们的教程对你有所帮助,请点赞+收藏+转发,这是对我们最大的支持。

往期部分文章

1. 最全WGCNA教程(替换数据即可出全部结果与图形)


2. 精美图形绘制教程

3. 转录组分析教程

4. 转录组下游分析

小杜的生信筆記 ,主要发表或收录生物信息学教程,以及基于R分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容