Tensorflow实现AlexNet


AlexNet把CNN的基本原理应用到了深度神经网络中,同时应用了许多新的技术:

  1. 将ReLU作为CNN的激活函数,成功解决了Sigmoid在网络较深时的梯度弥散问题
  2. 训练时使用Dropout随机忽略一部分神经,以避免模型过拟合。
过拟合是机器学习中一个常见的问题。Hinton教授团队提出了一个简单
有效的方法,Dropout,将神经网络某一层的输出节点数据随机丢弃一
部分,实质上等于创造出了很多新的随机样本,通过增大样本、减少特
征数量来防止过拟合,可以理解为每次丢弃节点数据是对特征的一种采样。
  1. 在CNN中使用重叠的最大池化。避免平均池化的模糊化效果,同时让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
  2. 使用LRN层,对局部神经元的活动创建竞争机制,使得其中响应较大的值变得相对更大,并抑制其它反馈较小的神经元,增加了模型的泛化能力。
    5.数据增强。主要就是对原始图像机型截取、翻转等。使用了数据增强后可以大大减轻过拟合,提升泛化能力。
  3. 对图像的RGB数据进行PCA处理,并对主成份分析做一个标准差为0.1的高斯扰动,增加一些噪声。

输入的图像是224x224x3的图像,以下是每个处理层的尺寸大小:
conv1 [32, 56, 56, 64]
pool1 [32, 27, 27, 64]
conv2 [32, 27, 27, 192]
pool2 [32, 13, 13, 192]
conv3 [32, 13, 13, 384]
conv4 [32, 13, 13, 256]
conv5 [32, 13, 13, 256]
pool5 [32, 6, 6, 256]
fcl1 [32, 4096]
fcl2 [32, 4096]
fcl3 [32, 1000]


下面是使用Tensorflow的实现:

# _*- coding:utf-8 _*_

import math
import time
import tensorflow as tf
from datetime import datetime

batch_size = 32
num_batches = 100

# 查看每一层网络结构
def print_activations(t):
    print(t.op.name, '  ', t.get_shape().as_list())

def inference(images):
    parameters = []

    # 第一个卷积层
    with tf.name_scope('conv1') as scope:
        kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32, stddev=1e-1),
                             name='weights')
        conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
                             trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activations(conv1)

    lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001/9, beta=0.75, name='lrn1')
    pool1 = tf.nn.max_pool(lrn1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool1')
    print_activations(pool1)

    # 第二个卷积层
    with tf.name_scope('conv2') as scope:
        kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32, stddev=1e-1),
                             name='weights')
        conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32),
                             trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activations(conv2)

    lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001/9, beta=0.75, name='lrn2')
    pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool2')
    print_activations(pool2)

    # 第三个卷积层
    with tf.name_scope('conv3') as scope:
        kernel = tf.Variable(tf.random_normal([3, 3, 192, 384], dtype=tf.float32, stddev=1e-1),
                             name='weights')
        conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
                             trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv3 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activations(conv3)

    # 第四个卷积层
    with tf.name_scope('conv4') as scope:
        kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], dtype=tf.float32, stddev=1e-1),
                             name='weights')
        conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                             trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv4 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activations(conv4)

    # 第五个卷积层
    with tf.name_scope('conv5') as scope:
        kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1),
                             name='weights')
        conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
        biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
                             trainable=True, name='biases')
        bias = tf.nn.bias_add(conv, biases)
        conv5 = tf.nn.relu(bias, name=scope)
        parameters += [kernel, biases]
        print_activations(conv5)

    pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool5')
    print_activations(pool5)

    # 第一个全连接层
    with tf.name_scope('fcl1') as scope:
        weight = tf.Variable(tf.truncated_normal([6 * 6 * 256, 4096], stddev=0.1), name='weights')
        biases = tf.Variable(tf.constant(0.0, shape=[4096], dtype=tf.float32), trainable=True, name='biases')
        h_pool5_flat = tf.reshape(pool5, [-1, 6 * 6 * 256])
        fcl1 = tf.nn.relu(tf.matmul(h_pool5_flat, weight) + biases, name=scope)
        drop1 = tf.nn.dropout(fcl1, 0.7)
        parameters += [weight, biases]
        print_activations(fcl1)

    # 第二个全连接层
    with tf.name_scope('fcl2') as scope:
        weight = tf.Variable(tf.truncated_normal([4096, 4096], stddev=0.1), name='weights')
        biases = tf.Variable(tf.constant(0.0, shape=[4096], dtype=tf.float32), trainable=True, name='biases')
        fcl2 = tf.nn.relu(tf.matmul(drop1, weight) + biases, name=scope)
        drop2 = tf.nn.dropout(fcl2, 0.7)
        parameters += [weight, biases]
        print_activations(fcl2)

    # 第三个全连接层
    with tf.name_scope('fcl3') as scope:
        weight = tf.Variable(tf.truncated_normal([4096, 1000], stddev=0.1), name='weights')
        biases = tf.Variable(tf.constant(0.0, shape=[1000], dtype=tf.float32), trainable=True, name='biases')
        fcl3 = tf.nn.relu(tf.matmul(drop2, weight) + biases, name=scope)
        parameters += [weight, biases]
        print_activations(fcl3)

    return fcl3, parameters


参考自《tensorflow实战》

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 228,156评论 6 531
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,401评论 3 415
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 176,069评论 0 373
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,873评论 1 309
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,635评论 6 408
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,128评论 1 323
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,203评论 3 441
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,365评论 0 288
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,881评论 1 334
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,733评论 3 354
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,935评论 1 369
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,475评论 5 358
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,172评论 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,582评论 0 26
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,821评论 1 282
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,595评论 3 390
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,908评论 2 372

推荐阅读更多精彩内容