Python学习目录
- 在Mac下使用Python3
- Python学习之数据类型
- Python学习之函数
- Python学习之高级特性
- Python学习之函数式编程
- Python学习之模块
- Python学习之面向对象编程
- Python学习之面向对象高级编程
- Python学习之错误调试和测试
- Python学习之IO编程
- Python学习之进程和线程
- Python学习之正则
- Python学习之常用模块
- Python学习之网络编程
IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。
文件读写
上代码:
try:
//读文件
f = open('/path/to/file', 'r')
print(f.read())
//写文件
f = open('/Users/michael/test.txt', 'w')
f.write('Hello, world!')
finally:
if f:
//关闭文件
f.close()
等价于:
//读文件
with open('/path/to/file', 'r') as f:
print(f.read())
//写文件
with open('/Users/michael/test.txt', 'w') as f:
f.write('Hello, world!')
打开文件
打开文本文件
1、读模式打开文件
要以读文件的模式打开一个文件对象,使用Python内置的open()
函数,传入文件名和标示符:
>>> f = open('/Users/michael/test.txt', 'r')
标示符'r'表示读,这样,我们就成功地打开了一个文件。
2、写模式打开文件
>>> f = open('/Users/michael/test.txt', 'w')
3、带编码方式打开文件(读或者写)
默认读写文件的编码方式是UTF-8,要读取非UTF-8编码的文本文件,需要给open()
函数传入encoding
参数,例如,读取GBK编码的文件:
>>> f = open('/Users/michael/gbk.txt', 'r', encoding='gbk')
打开二进制文件
要读取二进制文件,比如图片、视频等等,用'rb'
模式打开文件即可:
>>> f = open('/Users/michael/test.jpg', 'rb')
读文件
如果文件打开成功,接下来,调用read()
方法可以一次读取文件的全部内容,Python把内容读到内存,用一个str
对象表示:
>>> f.read()
调用read()
会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)
方法,每次最多读取size个字节的内容。另外,调用readline()
可以每次读取一行内容,调用readlines()
一次读取所有内容并按行返回list
。因此,要根据需要决定怎么调用。
如果文件很小,read()
一次性读取最方便;如果不能确定文件大小,反复调用read(size)
比较保险;如果是配置文件,调用readlines()
最方便:
for line in f.readlines():
print(line.strip()) # 把末尾的'\n'删掉
file-like Object
像open()
函数返回的这种有个read()
方法的对象,在Python中统称为file-like Object。除了file外,还可以是内存的字节流,网络流,自定义流等等。file-like Object不要求从特定类继承,只要写个read()
方法就行。
StringIO
就是在内存中创建的file-like Object,常用作临时缓冲。
写文件
写文件和读文件是一样的,唯一区别是调用open()
函数时,传入标识符'w'
或者'wb'
表示写文本文件或写二进制文件:
f.write('Hello, world!')
关闭文件
最后一步是调用close()
方法关闭文件。文件使用完毕后必须关闭,因为文件对象会占用操作系统的资源,并且操作系统同一时间能打开的文件数量也是有限的:
>>> f.close()
StringIO和BytesIO
很多时候,数据读写不一定是文件,也可以在内存中读写。
StringIO
StringIO顾名思义就是在内存中读写str。
要把str写入StringIO,我们需要先创建一个StringIO,然后,像文件一样写入即可:
>>> from io import StringIO
>>> f = StringIO()
>>> f.write('hello')
5
>>> f.write(' ')
1
>>> f.write('world!')
6
>>> print(f.getvalue())
hello world!
getvalue()
方法用于获得写入后的str。
要读取StringIO,可以用一个str初始化StringIO,然后,像读文件一样读取:
>>> from io import StringIO
>>> f = StringIO('Hello!\nHi!\nGoodbye!')
>>> while True:
... s = f.readline()
... if s == '':
... break
... print(s.strip())
...
Hello!
Hi!
Goodbye!
BytesIO
StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。
BytesIO实现了在内存中读写bytes,我们创建一个BytesIO,然后写入一些bytes:
>>> from io import BytesIO
>>> f = BytesIO()
>>> f.write('中文'.encode('utf-8'))
6
>>> print(f.getvalue())
b'\xe4\xb8\xad\xe6\x96\x87'
请注意,写入的不是str,而是经过UTF-8编码的bytes。
和StringIO类似,可以用一个bytes初始化BytesIO,然后,像读文件一样读取:
>>> from io import BytesIO
>>> f = BytesIO(b'\xe4\xb8\xad\xe6\x96\x87')
>>> f.read()
b'\xe4\xb8\xad\xe6\x96\x87'
操作文件和目录
如果我们要操作文件、目录,可以在命令行下面输入操作系统提供的各种命令来完成。比如dir
、cp
等命令。
如果要在Python程序中执行这些目录和文件的操作怎么办?其实操作系统提供的命令只是简单地调用了操作系统提供的接口函数,Python内置的os
模块也可以直接调用操作系统提供的接口函数。
操作文件和目录的函数一部分放在os
模块中,一部分放在os.path
模块中。
看看如何利用Python的特性来过滤文件。比如我们要列出当前目录下的所有目录,只需要一行代码:
>>> [x for x in os.listdir('.') if os.path.isdir(x)]
['.lein', '.local', '.m2', '.npm', '.ssh', '.Trash', '.vim', 'Applications', 'Desktop', ...]
要列出所有的.py
文件,也只需一行代码:
>>> [x for x in os.listdir('.') if os.path.isfile(x) and os.path.splitext(x)[1]=='.py']
['apis.py', 'config.py', 'models.py', 'pymonitor.py', 'test_db.py', 'urls.py', 'wsgiapp.py']
序列化
pickle
我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
Python提供了pickle
模块来实现序列化。Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
JSON
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
Python内置的json
模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'
dumps()
方法返回一个str
,内容就是标准的JSON。类似的,dump()
方法可以直接把JSON写入一个file-like Object
。
要把JSON反序列化为Python对象,用loads()
或者对应的load()
方法,前者把JSON的字符串反序列化,后者从file-like Object
中读取字符串并反序列化:
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> json.loads(json_str)
{'age': 20, 'score': 88, 'name': 'Bob'}
由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str
与JSON的字符串之间转换。