Android程序员需要了解的并发编程知识

前言--阅读本文你将得到什么

1.了解并发编程的基础知识如死锁,Synchronized,ReentrantLock,CAS,线程池等

2.了解一些多线程常见面试题,检验你是否真正掌握了多线程相关知识

死锁

所谓死锁是指两个或两个以上的线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去

死锁产生的必要条件: 产生死锁必须同时满足以下四个条件,只要其中任一条件不成立,死锁就不会发生。

(1)互斥条件:一个资源每次只能被一个进程使用。独木桥每次只能通过一个人。

(2)请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。乙不退出桥面,甲也不退出桥面。

(3)不剥夺条件: 进程已获得的资源,在未使用完之前,不能强行剥夺。甲不能强制乙退出桥面,乙也不能强制甲退出桥面。

(4)循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。如果乙不退出桥面,甲不能通过,甲不退出桥面,乙不能通过。

白话版

1.多个操作者请求多个资源

2.争夺资源的顺序不对

3.拿到资源不放手

如何避免死锁

在有些情况下死锁是可以避免的。下面介绍三种用于避免死锁的技术:

1.加锁顺序(线程按照一定的顺序加锁)

2.加锁时限(线程尝试获取锁的时候加上一定的时限,超过时限则放弃对该锁的请求,并释放自己占有的锁) 通过Lock方法来拿锁

3.死锁检测

ThreadLocal

什么是ThreadLocal?

ThreadLocal的存在肯定是在解决某个问题的,所以这个问题是什么呢?

问题是:如何将数据与线程绑定起来,从而该数据只能在绑定的线程里访问,而其它线程无法访问?

ThreadLocal能很方便的解决这个问题,这也就是所谓的线程间数据隔离。Local这个单词有『局部的』意思,并且在源码首行注释中已写明『This class provides thread-local variables.(该类提供线程局部变量)』,所以ThreadLocal的最佳理解是线程局部变量辅助器,通过它能很方便的设置或者获取线程私有的数据。而线程私有的数据也被美其名曰线程局部变量。

关于ThreadLocal的详细实现,详情可见:juejin.im/post/684490…

ThreadLocal内存泄漏

ThreadLocal的内存泄漏是面试中常见的问题

ThreadLocal内存泄漏原因

ThreadLocal操作不当会引发内存泄露,最主要的原因在于它的内部类ThreadLocalMap中的Entry的设计。

Entry继承了WeakReference<ThreadLocal<?>>,即Entry的key是弱引用,所以key'会在垃圾回收的时候被回收掉, 而key对应的value则不会被回收, 这样会导致一种现象:key为null,value有值。

key为空的话value是无效数据,久而久之,value累加就会导致内存泄漏。

如何解决内存泄漏

每次使用完ThreadLocal都调用它的remove()方法清除数据。因为它的remove方法会主动将当前的key和value(Entry)进行清除。

e.clear()用于清除Entry的key,它调用的是WeakReference中的方法:this.referent = null

expungeStaleEntry(i)用于清除Entry对应的value, 这个后面会详细讲。

JDK开发者是如何避免内存泄漏的

ThreadLocal的设计者也意识到了这一点(内存泄漏), 他们在一些方法中埋了对key=null的value擦除操作。

这里拿ThreadLocal提供的get()方法举例,它调用了ThreadLocalMap#getEntry()方法,对key进行了校验和对null key进行擦除。

如果key为null, 则会调用getEntryAfterMiss()方法,在这个方法中,如果k == null , 则调用expungeStaleEntry(i);方法。

expungeStaleEntry(i)方法完成了对key=null 的key所对应的value进行赋空, 释放了空间避免内存泄漏。

同时它遍历下一个key为空的entry, 并将value赋值为null, 等待下次GC释放掉其空间。

这样做, 也只能说尽可能避免内存泄漏, 但并不会完全解决内存泄漏这个问题。比如极端情况下我们只创建ThreadLocal但不调用set、get、remove方法等。所以最能解决问题的办法就是用完ThreadLocal后手动调用remove().

为什么ThreadLocalMap Key要使用弱引用

上面我们已经知道,使用弱引用会造成内存泄漏

那为什么key不设置为强引用?

如果key设置为强引用, 当threadLocal实例释放后, threadLocal=null, 但是threadLocal会有强引用指向threadLocalMap,threadLocalMap.Entry又强引用threadLocal, 这样会导致threadLocal不能正常被GC回收。

弱引用虽然会引起内存泄漏, 但是也有set、get、remove方法操作对null key进行擦除的补救措施, 方案上略胜一筹。

CAS

CAS:Compare and Swap,即比较再交换。

jdk5增加了并发包java.util.concurrent.*,其下面的类使用CAS算法实现了区别于synchronouse同步锁的一种乐观锁。JDK 5之前Java语言是靠synchronized关键字保证同步的,这是一种独占锁,也是是悲观锁

对CAS的理解,CAS是一种无锁算法,CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做

CAS利用了现代处理器都支持的CAS指令,循环这个指令,直到成功为止。


CAS可能带来的问题

1.ABA问题

可以通过版本控制解决

AtomicMarkableReference 可以解决,使用boolean变量——表示引用变量是否被更改过,不关心中间变量变化了几次

AtomicStampedReference 也可以解决,其中的构造方法中initialStamp(时间戳)用来唯一标识引用变量,引用变量中途被更改了几次

2.开销问题

3.只能保证一个共享变量的原子操作

通过AtomicRefrence解决,将多个变量打包成一个对象来使用

线程池

为什么要用线程池

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。假设一个服务器完成一项任务所需时间为:T1 创建线程时间,T2 在线程中执行任务的时间,T3 销毁线程时间。 如果:T1 + T3 远大于 T2,则可以采用线程池,以提高服务器性能。线程池技术正是关注如何缩短或调整T1,T3时间的技术,从而提高服务器程序性能的。它把T1,T3分别安排在服务器程序的启动和结束的时间段或者一些空闲的时间段,这样在服务器程序处理客户请求时,不会有T1,T3的开销了。

第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。

线程池各参数含义

corePoolSize

线程池的基本大小,即在没有任务需要执行的时候线程池的大小,并且只有在工作队列满了的情况下才会创建超出这个数量的线程。这里需要注意的是:在刚刚创建ThreadPoolExecutor的时候,线程并不会立即启动,而是要等到有任务提交时才会启动,除非调用了prestartCoreThread/prestartAllCoreThreads事先启动核心线程。再考虑到keepAliveTime和allowCoreThreadTimeOut超时参数的影响,所以没有任务需要执行的时候,线程池的大小不一定是corePoolSize。

maximumPoolSize

线程池中允许的最大线程数,线程池中的当前线程数目不会超过该值。如果队列中任务已满,并且当前线程个数小于maximumPoolSize,那么会创建新的线程来执行任务。这里值得一提的是largestPoolSize,该变量记录了线程池在整个生命周期中曾经出现的最大线程个数。为什么说是曾经呢?因为线程池创建之后,可以调用setMaximumPoolSize()改变运行的最大线程的数目。

poolSize

线程池中当前线程的数量,当该值为0的时候,意味着没有任何线程,线程池会终止;同一时刻,poolSize不会超过maximumPoolSize。

阻塞队列等待

新提交一个任务时的处理流程很明显:

1、如果线程池的当前大小还没有达到基本大小(poolSize < corePoolSize),那么就新增加一个线程处理新提交的任务;

2、如果当前大小已经达到了基本大小,就将新提交的任务提交到阻塞队列排队,等候处理workQueue.offer(command);

3、如果队列容量已达上限,并且当前大小poolSize没有达到maximumPoolSize,那么就新增线程来处理任务;

4、如果队列已满,并且当前线程数目也已经达到上限,那么意味着线程池的处理能力已经达到了极限,此时需要拒绝新增加的任务。至于如何拒绝处理新增的任务,取决于线程池的饱和策略RejectedExecutionHandler。

接下来我们看下allowCoreThreadTimeOut和keepAliveTime属性的含义。在压力很大的情况下,线程池中的所有线程都在处理新提交的任务或者是在排队的任务,这个时候线程池处在忙碌状态。如果压力很小,那么可能很多线程池都处在空闲状态,这个时候为了节省系统资源,回收这些没有用的空闲线程,就必须提供一些超时机制,这也是线程池大小调节策略的一部分。通过corePoolSize和maximumPoolSize,控制如何新增线程;通过allowCoreThreadTimeOut和keepAliveTime,控制如何销毁线程。

allowCoreThreadTimeOut

该属性用来控制是否允许核心线程超时退出。If false,core threads stay alive even when idle.If true, core threads use keepAliveTime to time out waiting for work。如果线程池的大小已经达到了corePoolSize,不管有没有任务需要执行,线程池都会保证这些核心线程处于存活状态。可以知道:该属性只是用来控制核心线程的。

keepAliveTime

如果一个线程处在空闲状态的时间超过了该属性值,就会因为超时而退出。举个例子,如果线程池的核心大小corePoolSize=5,而当前大小poolSize =8,那么超出核心大小的线程,会按照keepAliveTime的值判断是否会超时退出。如果线程池的核心大小corePoolSize=5,而当前大小poolSize =5,那么线程池中所有线程都是核心线程,这个时候线程是否会退出,取决于allowCoreThreadTimeOut

一些常见并发编程面试题

sychronied修饰普通方法和静态方法的区别?什么是可见性?

对象锁是用于对象实例方法,或者一个对象实例上的,类锁是用于类的静态方法或者一个类的class对象上的。我们知道,类的对象实例可以有很多个,但是每个类只有一个class对象,所以不同对象实例的对象锁是互不干扰的,但是每个类只有一个类锁。

但是有一点必须注意的是,其实类锁只是一个概念上的东西,并不是真实存在的,类锁其实锁的是每个类的对应的class对象。类锁和对象锁之间也是互不干扰的。

可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。

由于线程对变量的所有操作都必须在工作内存中进行,而不能直接读写主内存中的变量,那么对于共享变量V,它们首先是在自己的工作内存,之后再同步到主内存。可是并不会及时的刷到主存中,而是会有一定时间差。很明显,这个时候线程 A 对变量 V 的操作对于线程 B 而言就不具备可见性了 。

要解决共享对象可见性这个问题,我们可以使用volatile关键字或者是加锁。

锁分哪几种?

CAS无锁编程的原理

使用当前的处理器基本都支持CAS()的指令,只不过每个厂家所实现的算法并不一样,每一个CAS操作过程都包含三个运算符:一个内存地址V,一个期望的值A和一个新值B,操作的时候如果这个地址上存放的值等于这个期望的值A,则将地址上的值赋为新值B,否则不做任何操作。

CAS的基本思路就是,如果这个地址上的值和期望的值相等,则给其赋予新值,否则不做任何事儿,但是要返回原值是多少。循环CAS就是在一个循环里不断的做cas操作,直到成功为止。

还可以说说CAS的三大问题。

ReentrantLock的实现原理。

线程可以重复进入任何一个它已经拥有的锁所同步着的代码块,synchronized、ReentrantLock都是可重入的锁。在实现上,就是线程每次获取锁时判定如果获得锁的线程是它自己时,简单将计数器累积即可,每释放一次锁,进行计数器累减,直到计算器归零,表示线程已经彻底释放锁。

底层则是利用了JUC中的AQS来实现的。

Synchronized的原理以及与ReentrantLock的区别

synchronized (this)原理:涉及两条指令:monitorenter,monitorexit;再说同步方法,从同步方法反编译的结果来看,方法的同步并没有通过指令monitorenter和monitorexit来实现,相对于普通方法,其常量池中多了ACC_SYNCHRONIZED标示符。

JVM就是根据该标示符来实现方法的同步的:当方法被调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。

关于 monitorenter 和 monitorexit,可以理解为一把具体的锁。在这个锁中保存着两个比较重要的属性:计数器和指针。

计数器代表当前线程一共访问了几次这把锁;

指针指向持有这把锁的线程。

用一张图表示如下:

锁计数器默认为0,当执行monitorenter指令时,如锁计数器值为0 说明这把锁并没有被其它线程持有。那么这个线程会将计数器加1,并将锁中的指针指向自己。当执行monitorexit指令时,会将计数器减1。

Lock与synchronized的区别

1.来源:

lock是一个接口,而synchronized是java的一个关键字,synchronized是内置的语言实现;

2.异常是否释放锁:

synchronized在发生异常时候会自动释放占有的锁,因此不会出现死锁;而lock发生异常时候,不会主动释放占有的锁,必须手动unlock来释放锁,可能引起死锁的发生。(所以最好将同步代码块用try catch包起来,finally中写入unlock,避免死锁的发生。)

3.是否响应中断

lock等待锁过程中可以用interrupt来中断等待,而synchronized只能等待锁的释放,不能响应中断;

4.是否知道获取锁

Lock可以通过trylock来知道有没有获取锁,而synchronized不能;

5.性能

Lock可以提高多个线程进行读操作的效率。(可以通过readwritelock实现读写分离)

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

6.同步

synchronized使用Object对象本身的wait 、notify、notifyAll调度机制,而Lock可以使用Condition进行线程之间的调度

Synchronized static与非static锁的区别和范围

对象锁是用于对象实例方法,或者一个对象实例上的,类锁是用于类的静态方法或者一个类的class对象上的。我们知道,类的对象实例可以有很多个,但是每个类只有一个class对象,所以不同对象实例的对象锁是互不干扰的,但是每个类只有一个类锁。

但是有一点必须注意的是,其实类锁只是一个概念上的东西,并不是真实存在的,类锁其实锁的是每个类的对应的class对象。类锁和对象锁之间也是互不干扰的。

volatile 能否保证线程安全?在DCL上的作用是什么?

不能保证,在DCL的作用是:volatile是会保证被修饰的变量的可见性和 有序性,保证了单例模式下,保证在创建对象的时候的执行顺序一定是

1.分配内存空间

2.实例化对象instance

3.把instance引用指向已分配的内存空间,此时instance有了内存地址,不再为null了 ,从而保证了instance要么为null 要么是已经完全初始化好的对象

volatile和synchronize有什么区别?

volatile是最轻量的同步机制。

volatile保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。但是volatile不能保证操作的原子性,因此多线程下的写复合操作会导致线程安全问题。

关键字synchronized可以修饰方法或者以同步块的形式来进行使用,它主要确保多个线程在同一个时刻,只能有一个线程处于方法或者同步块中,它保证了线程对变量访问的可见性和排他性,又称为内置锁机制

什么是守护线程?你是如何退出一个线程的?

Daemon(守护)线程是一种支持型线程,因为它主要被用作程序中后台调度以及支持性工作。这意味着,当一个Java虚拟机中不存在非Daemon线程的时候,Java虚拟机将会退出。可以通过调用Thread.setDaemon(true)将线程设置为Daemon线程。我们一般用不上,比如垃圾回收线程就是Daemon线程。

线程的中止:

要么是run执行完成了,要么是抛出了一个未处理的异常导致线程提前结束。

暂停、恢复和停止操作对应在线程Thread的API就是suspend()、resume()和stop()。但是这些API是过期的,也就是不建议使用的。因为会导致程序可能工作在不确定状态下。

安全的中止则是其他线程通过调用某个线程A的interrupt()方法对其进行中断操作,被中断的线程则是通过线程通过方法isInterrupted()来进行判断是否被中断,也可以调用静态方法Thread.interrupted()来进行判断当前线程是否被中断,不过Thread.interrupted()会同时将中断标识位改写为false

sleep 、wait、yield 的区别,wait 的线程如何唤醒它?

yield()方法:使当前线程让出CPU占有权,但让出的时间是不可设定的。也不会释放锁资源。所有执行yield()的线程有可能在进入到就绪状态后会被操作系统再次选中马上又被执行。

yield() 、sleep()被调用后,都不会释放当前线程所持有的锁。

调用wait()方法后,会释放当前线程持有的锁,而且当前被唤醒后,会重新去竞争锁,锁竞争到后才会执行wait方法后面的代码。

Wait通常被用于线程间交互,sleep通常被用于暂停执行,yield()方法使当前线程让出CPU占有权。

wait 的线程使用notify/notifyAll()进行唤醒

说说线程池基本原理。

在开发过程中,合理地使用线程池能够带来3个好处。

第一:降低资源消耗。第二:提高响应速度。第三:提高线程的可管理性。

1)如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。

2)如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。

3)如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务。

4)如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用 RejectedExecutionHandler.rejectedExecution()方法。

总结

作者:RicardoMJiang
链接:https://juejin.im/post/6880815033522061319

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容