linux进程内存相关

linux内存寻址

3种地址:虚拟地址、物理地址、逻辑地址
物理地址:内存的电路地址,对应内存地址线上的高低电平,物理可见的。
虚拟地址:分页机制的产物,也叫线性地址,是进程能看见的地址。
逻辑地址:分段机制的产物,属于inter cpu的历史遗留问题,linux可以当做不存在。
3种地址的转换:进程访问逻辑地址,linux内核根据分段机制装换成虚拟地址,然后把进程的页表和虚拟地址都告诉cpu,cpu就可以根据分页机制将虚拟地址装换成物理地址,然后访问内存。
linux内核中巧妙地屏蔽里分段机制,就是逻辑地址等于虚拟地址,访问内存只需要利用分页机制把虚拟地址转换成物理地址。

linux进程地址空间

linux会为每个进程创建自己的虚拟地址空间,就是进程地址空间,64位系统就是128T的内存空间。需要注意的是,虚拟地址就是假的,一开始不和物理地址对应,也就是说不占用物理内存,只有当虚拟地址有写入操作是,内核会触发缺页,分配真实的物理地址给虚拟地址。物理地址的管理可参考内核内存管理

image.png

kernel space:进程的内核空间,用户态不能访问
Stack:栈区,函数调用压栈时使用。
Memory Mapping Region:mmap区域。
Heap:堆区,申请小内存时使用。
最下面的BSS、DATA等就是程序的2进制文件里,程序启动时,系统会把他们加载到地址空间内。

linux进程内存分配

从进程空间看,用户态闲置内存有3块,Stack、Memory Mapping Region、Heap,Stack是程序函数调用运行时需要的,不可控,能自由分配的内存就剩Memory Mapping Region、Heap了,linux系统提供的内存分配函数就是针对这两个区域的。
Heap操作函数:int brk(void *addr)、void *sbrk(intptr_t increment)
Memory Mapping Region操作函数:mmap()、munmap()

内存管理模块

当然进程可以直接使用系统调用去申请内存,但是如果不管理的话,经过大量的申请和释放,会把进程空间切割的乱七八糟,导致不能申请大块的连续空间,为此就出现了内存管理模块,封装了系统调用,对进程提供malloc和free等高级函数。实际上,除了一些特殊程序,我们也很少用系统调用,一般都是使用内存管理模块提供的malloc和free,关系如下图:


内存管理.png

内存管理模块用各种好处,例如不会每次操作都去执行系统调用,减少内存碎片的产生等等。
当然也有很多实现方式,例如常用的glibc的Ptmalloc,google的tcmalloc,facebook的jemalloc等。各有各的应用场景,blablabla....
使用时,gcc默认会链接glibc的,如果想使用其他lib,gcc链接时指定就能覆盖掉glibc的。

Ptmalloc

我们重点讲Ptmalloc,从而启发程序员在写程序时多考虑下内存分配情况,可以选择或自己实现适合自己程序的内存管理lib。
Ptmalloc的历史发展,blablabla......,Ptmalloc采取内存池管理,进程malloc时,通过brk(小于128K的内存)、mmap(大内存)从系统获取地址空间,给进程使用,进程free时,不会立即通过brk、munmap将地址空间还给系统,会自己维护起来,叫做空闲内存,这些空闲内存在进程再次malloc时,还会被分出去,并且空闲内存会在特定条件下合并起来还给系统。

arena

内存分配区,管理了一片内存,对外分发和回收,可以理解为一个内存池,分main arena和non main arena。
main arena:最早的分配区,管理着所有可分配的内存,通过brk,mmap等系统调用向系统申请内存。注意只有main arena可以操作Heap。
non main arena:由于多线程的出现,如果多有线程都操作main arena就会有竞争,需要加锁控制,所以出现了non main arena,通过mmap向main arena申请一大块内存,然后自己管理,可以理解为内存分销商。
只有主线程在main arena上申请内存,子线程在non main arena上,non main arena的个数是有上限的,所以non main arena允许多个子线程共用,这样就涉及到加锁,所以程序涉及应避免子线程个数太多。

chunk

进程申请到的一块内存叫做一个内存片,arena内部使用chunk数据结构来描述内存片,包括进程正在使用的内存片,和进程free掉的空闲内存片


image.png

A:是否main arena内存
M:使用mmap内存
P:上一块是否被使用
size of previous chunk:上一块没有被使用时,表示上块长度,被使用时是上块用来存User data的。
Size of chunk:就是下一块的size of previous chunk,释放时填上本块长度,供下块合并用。

空闲chunk的组织

分给进程的内存片arena可以不管,但是进程free回来的,arena需要通过一定方式组织起来,方便进程再次使用。组织方式有下面几种:

bins

bins是个数组,包含128个bin,每个bin是个链表,分small bin和large bin两种,各64个,small bin中chunk大小固定,两个相邻的small bin中的chunk大小相差8bytes,large bin中chunk大小是一定范围内的,其中的chunk按大小排列。
空闲chunk按大小选择合适的bin,按新旧顺序挂到链表上,优先分配旧的chunk。


image.png
fast bins

不大于max_fast (默认值为64B)的chunk被释放后,首先会被放到fast bins 中,fast bins中的chunk并不改变它的使用标志P。这样也就无法将它们合并,当需要给用户分配的chunk小于或等于max_fast时,ptmalloc首先会在fast bins中查找相应的空闲块。在特定的时候,ptmalloc会遍历fast bins中的chunk,将相邻的空闲chunk进行合并,并将合并后的chunk加入unsorted bin中。

unsorted bin

进行malloc时,如果在fast bins中没有找到合适的chunk,则ptmalloc会先在unsorted bin中查找合适的空闲chunk,如果unsorted bin不能满足分配要求。malloc便会将unsorted bin中的chunk加入bins中。然后再从bins中继续进行查找和分配过程。从这个过程可以看出来,unsorted bin可以看做是bins的一个缓冲区,增加它只是为了加快分配的速度。

特殊chunk

top chunk

前面的bin中都是回收回来的内存,top chunk才是内存的初始来源,每个arena都有一个top chunk,用来管理Heap的,Heap会在arena第一次分配内存时初始化,会分配一块(chunk_size + 128K) align 4K的空间(132K)作为初始的Heap,top chunk占据整个空间,每次分配会在低地址出切出一片,如下图:


top chunk (1).png

回收时,只有和top chunk相连的内存才能和top chunk合并,才能进而还给系统。

子线程Heap:在main arena中mmap出64M的空间,叫做sub-heap,再在sub-heap上初始化Heap。
主线程的Heap才是真Heap,使用进程Heap,使用brk申请内存。


image.png

子线程的heap不够用时,会在申请新的sub-heap,和老的sub-heap单向链表连起来,top chunk会搬到新sub-heap上。


image.png
mmaped chunk

描述mmap出来的内存,单独管理,free时按阈值来决定是否munmap,有动态调整阈值功能,防止太频繁的mmap和munmap。本文不关注。

Last remainder

即最后一次small request中因分割而得到的剩余部分,它有利于改进引用局部性,也即后续对 small chunk 的 malloc 请求可能最终被分配得彼此靠近。
当用户请求 small chunk而无法从small bin和unsorted bin得到时,会在large bin中找最合适的chunk,然后做切割,返回给用户的User chunk,剩下的是Remainder chunk添加到unsorted bin中。这一Remainder chunk就将成为last remainder chunk。

分配和回收

malloc小于128K的内存
  1. 获取arena锁。
  2. 将用户的请求大小转换为实际需要分配的chunk空间大小。
  3. 判断所需分配chunk的大小是否满足chunk_size <= max_fast (max_fast 默认为 64B),如果是的话,则转下一步,否则跳到第5步。
  4. 首先尝试在fast bins中取一个所需大小的chunk分配给用户。如果可以找到,则分配结束。否则转到下一步。
  5. 判断所需大小是否处在small bins中,即判断chunk_size < 512B是否成立。如果chunk大小处在small bins中,则转下一步,否则转到第6步。
  6. 根据所需分配的chunk的大小,找到具体所在的某个small bin,从该bin的尾部摘取一个恰好满足大小的chunk。若成功,则分配结束,否则,转到下一步。
  7. 到了这一步,说明需要分配的是一块大的内存,或者small bins中找不到合适的 chunk。于是,ptmalloc首先会遍历fast bins中的chunk,将相邻的chunk进行合并,并链接到unsorted bin中,然后遍历unsorted bin中的chunk,如果unsorted bin只有一个chunk,并且这个chunk在上次分配时被使用过,并且所需分配的chunk大小属于small bins,并且chunk的大小大于等于需要分配的大小,这种情况下就直接将该chunk进行切割,分配结束,否则将根据chunk的空间大小将其放入small bins或是large bins中,遍历完成后,转入下一步。
  8. 到了这一步,说明需要分配的是一块大的内存,或者small bins和unsorted bin中都找不到合适的 chunk,并且fast bins和unsorted bin中所有的chunk都清除干净了。从large bins中按照“smallest-first,best-fit”原则,找一个合适的 chunk,从中划分一块所需大小的chunk,并将剩下的部分链接回到bins中。若操作成功,则分配结束,否则转到下一步。
  9. 如果搜索fast bins和bins都没有找到合适的chunk,那么就需要操作top chunk来进行分配了。判断top chunk大小是否满足所需chunk的大小,如果是,则从top chunk中分出一块来。否则转到下一步。
  10. 到了这一步,说明top chunk也不能满足分配要求,所以,于是就有了两个选择: 如果是主分配区,调用sbrk(),增加top chunk大小;如果是非主分配区,调用mmap来分配一个新的sub-heap,增加top chunk大小。扩大top chunk后,切分内存片,返回给用户。
free过程

下一块为高地址,前一块为低地址。

  1. free()函数同样首先需要获取分配区的锁,来保证线程安全。
  2. 若chunk_size <= max_fast,并且chunk不在heap顶部,也就是说不与top chunk相邻,则转到下一步,否则跳到第4步。
  3. 将chunk放到fast bins中,函数返回。
  4. 判断前一个chunk是否处在使用中,如果也是空闲块,则合并。并转下一步。
  5. 判断当前释放chunk的下一个块是否为top chunk,如果是,则转第7步,否则转下一步。
  6. 判断下一个chunk是否处在使用中,如果下一个chunk也是空闲的,则合并,并将合并后的chunk放到unsorted bin中。并转到第8步。
  7. 如果执行到这一步,说明释放了一个与top chunk相邻的chunk。则无论它有多大,都将它与top chunk合并,并更新top chunk的大小等信息。转下一步。
  8. 判断合并后的chunk的大小是否大于FASTBIN_CONSOLIDATION_THRESHOLD(默认64K),如果是,进行fast bins的合并操作,遍历fast bins中的chunk,与相邻的空闲chunk合并,合并后的chunk会被放到unsorted bin中。fast bins将变为空,操作完成之后转下一步。
  9. 判断top chunk的大小是否大于mmap收缩阈值(默认为128KB),如果是的话,对于主分配区,则会试图归还top chunk中的一部分给操作系统,但是初始化的132KB空间是不会归还的;如果为非主分配区,会进行sub-heap收缩,将top chunk的一部分返回给操作系统,如果top chunk为整个sub-heap,会把整个sub-heap还回给操作系统。做完这一步之后,释放结束,从 free() 函数退出。

使用注意事项

  1. 后分配的内存先释放,因为ptmalloc收缩内存是从top chunk开始,如果与top chunk相邻的chunk不能释放,top chunk以下的chunk都无法释放。
  2. 尽量减少程序的线程数量和避免频繁分配/释放内存。频繁分配,会导致锁的竞争,最终导致非主分配区增加,内存碎片增高,并且性能降低。
  3. 防止内存泄露,ptmalloc对内存泄露是相当敏感的,根据它的内存收缩机制,如果与top chunk相邻的那个chunk没有回收,将导致top chunk一下很多的空闲内存都无法返回给操作系统。

引用

Glibc内存管理 华庭(庄明强)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容