学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

人工神经网络,借鉴生物神经网络工作原理数学模型。

由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息。信息检索领域,模型训练合理排序模型,输入特征,文档质量、文档点击历史、文档前链数目、文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系。让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联。输出输入一致,自编码算法。

人工神经网络模型,多层神经元结构建立,每一层抽象一种思维过程,经多层思考,得出结论。神经网络每一层有每一层专做事情,每一层神经元添加特殊约束条件。多层提取特定特征做机器学习是深度学习。

卷积,在一定范围内做平移并求平均值。卷积积分公式,对τ积分,对固定x,找x附近所有变量,求两个函数乘积,并求和。神经网络里面,每个神经元计算输出卷积公式,神经网络每一层输出一种更高级特征。自然语言,较近上下文词语之间存在一定相关性,标点、特殊词等分隔使、传统自然语言处理脱离词与词之间关联,丢失部分重要信息,利用卷积神经网络可以做多元(n-gram)计算,不损失自然语言临近词相关性信息。

自动问答系统深度学习应用RNN,利用时序建模。

卷积神经网络(Convolutional Neural Network,CNN),二维离散卷积运算和人工神经网络结合深度神经网络。自动提取特征。

手写数字识别。http://yann.lecun.com/exdb/mnist/手写数据集,文件是二进制像素单位保存几万张图片文件,https://github.com/warmheartli/ChatBotCourse

多层卷积网络,第一层一个卷积和一个max pooling,卷积运算“视野”5×5像素范围,卷积使用1步长、0边距模板(保证输入输出同一个大小),1个输入通道(图片灰度,单色),32个输出通道(32个特征)。每张图片28×28像素,第一次卷积输出28×28大小。max pooling采用2×2大小模板,池化后输出尺寸14×14,一共有32个通道,一张图片输出是14×14×32=6272像素。第二层一个卷积和一个max pooling,输入通道32个(对应第一层32个特征),输出通道64个(输出64个特征),输入每张大小14×14,卷积层输出14×14,经过max pooling,输出大小7×7,输出像素7×7×64=3136。第三层一个密集连接层,一个有1024个神经元全连接层,第二层输出7×7×64个值作1024个神经元输入。神经元激活函数为ReLu函数,平滑版Softplus g(x)=log(1+e^x))。最终输出层,第三层1024个输出为输入,设计一个softmax层,输出10个概率值。

# coding:utf-8

import sys
import importlib
importlib.reload(sys)

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', './', 'Directory for storing data')

mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)

# 初始化生成随机的权重(变量),避免神经元输出恒为0
def weight_variable(shape):
    # 以正态分布生成随机值
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

# 初始化生成随机的偏置项(常量),避免神经元输出恒为0
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 卷积采用1步长,0边距,保证输入输出大小相同
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# 池化采用2×2模板
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
        strides=[1, 2, 2, 1], padding='SAME')

# 28*28=784
x = tf.placeholder(tf.float32, [None, 784])
# 输出类别共10个:0-9
y_ = tf.placeholder("float", [None,10])

# 第一层卷积权重,视野是5*5,输入通道1个,输出通道32个
W_conv1 = weight_variable([5, 5, 1, 32])
# 第一层卷积偏置项有32个
b_conv1 = bias_variable([32])

# 把x变成4d向量,第二维和第三维是图像尺寸,第四维是颜色通道数1
x_image = tf.reshape(x, [-1,28,28,1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# 第二层卷积权重,视野是5*5,输入通道32个,输出通道64个
W_conv2 = weight_variable([5, 5, 32, 64])
# 第二层卷积偏置项有64个
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# 第二层池化后尺寸编程7*7,第三层是全连接,输入是64个通道,输出是1024个神经元
W_fc1 = weight_variable([7 * 7 * 64, 1024])
# 第三层全连接偏置项有1024个
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 按float做dropout,以减少过拟合
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 最后的softmax层生成10种分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
# Adam优化器来做梯度最速下降
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())

for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

词向量。自然语言需要数学化才能被计算机认识计算。为每个词分配一个编号,不能表示词与词关系。每一个词对应一个向量,词义相近词,词向量距离越近(欧氏距离、夹角余弦)。词向量,维度一般较低,一般是50维或100维,可避免维度灾难,更容易深度学习。

语言模型表达已知前n-1个词前提下,预测第n个词的概率。词向量训练,无监督学习,没有标注数据,给n篇文章,可训练出词向量。基于三层神经网络构建n-gram语言模型。最下面w是词,上面C(w)是词向量,词向量一层是神经网络输入层(第一层),输入层是一个(n-1)×m矩阵,n-1是词向量数目,m是词向量维度。第二层(隐藏层)是普通神经网络,H为权重,tanh为激活函数。第三层(输出层)有|V|个节点,|V|是词表大小,输出U为权重,softmax作激活函数实现归一化,最终输出某个词概率。增加一个从输入层到输出层直连边(线性变换),可提升模型效果,变换矩阵设为W。假设C(w)是输入x,y计算公式是y = b + Wx + Utanh(d+Hx)。模型训练变量C、H、U、W。梯度下降法训练得出C是生成词向量所用矩阵,C(w)是所需词向量。

词向量应用。找同义词。案例google word2vec工具,训练好词向量,指定一个词,返回cos距离最相近词并排序。词性标注和语义角色标注任务。词向量作神经网络输入层,通过前馈网络和卷积网络完成。句法分析和情感分析任务。词向量作递归神经网络输入。命名实体识别和短语识别。词向量作扩展特征使用。词向量 C(king)-C(queue)≈C(man)-C(woman),减法是向量逐维相减,C(king)-C(man)+C(woman)最相近向量是C(queue),语义空间线性关系。

词向量是深度学习应用NLP根基,word2vec是使用最广泛最简单有效词向量训练工具。

一个记忆单元识别一个事物,叫localist representation。几个记忆单元分别识别基础信息,通过这几个记忆单元输出,表示所有事物,叫distributed representation,词向量。localist representation 稀疏表达,one hot vector,每一类型用向量一维来表示。distributed representation 分布式表达,增加表达只需要增加一个或很少特征维度。

word embedding,词嵌入,范畴论,morphism(态射),态射表示两个数学结构中保持结构过程抽象,一个域和另一个域之间关系。范畴论中嵌入(态射)保持结构,word embedding表示“降维”嵌入,通过降维避免维度灾难,降低计算复杂度,更易于深度学习应用。

word2vec本质,通过distributed representation表达方式表示词,通过降维word embedding减少计算量。

word2vec训练神经概率语言模型。word2vec CBOW和Skip-gram模型。CBOW模型。Continuous Bag-of-Words Model,已知当前词上下文预测当前词。CBOW模型神经网络结构,输入层,词w上下文2c个词的词向量。投影层,输入层2c个向量做求和累加。输出层,霍夫曼树,叶子节点是语料出现过词,权重是出现次数。神经网络模型首尾相接改成求和累加,减少维度。去掉隐藏层,减少计算量。输出层softmax归一化运算改成霍夫曼树。

基于霍夫曼树Hierarchical Softmax技术。基于训练语料得到每一个可能w概率。霍夫曼树,非根节点θ表示待训练参数向量,当投射层产出新向量x,逻辑回归公式 σ(xTθ) = 1/(1+e^(-xTθ)),可得每一层被分到左节点(1)还是右节点(0)概率p(d|x,θ) = 1-σ(xTθ)和p(d|x,θ) = σ(xTθ)。以对数似然函数为优化目标,假设两个求和符号部分记作L(w, j),θ更新公式,x梯度公式,x多个v累加,word2vec中v更新方法。Skip-gram模型,Continuous Skip-gram Model,已知当前词情况预测上下文。Skip-gram模型神经网络结构。输入层,w词向量v(w)。投影层,v(w)。输出层,霍夫曼树。θ和v(w)更新公式,符号名从x改v(w)。

word2vec,下载源码,https://github.com/warmheartli/ChatBotCourse/tree/master/word2vec),执行make编译(mac系统代码所有#include <malloc.h>替换成#include <sys/malloc.h>)。编译生成word2vec、word2phrase、word-analogy、distance、compute-accuracy二进制文件。训练,语料,已切好词(空格分隔)文本。执行 ./word2vec -train train.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -thread 12 -binary 1 。生成vectors.bin文件,训练好词向量二进制文件,求近义词了,执行 ./distance vectors.bin 。

参考资料:
《Python 自然语言处理》
http://www.shareditor.com/blogshow?blogId=92
http://www.shareditor.com/blogshow?blogId=97
http://www.shareditor.com/blogshow?blogId=99
http://www.shareditor.com/blogshow?blogId=100

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容

  • 前面的文章主要从理论的角度介绍了自然语言人机对话系统所可能涉及到的多个领域的经典模型和基础知识。这篇文章,甚至之后...
    我偏笑_NSNirvana阅读 13,842评论 2 64
  • 水三官 徐怀清//文 在我们村东头有一座三官庙,学者们称之为:水三官。这是为了区别于桃园三结义的汉(旱)三官;另就...
    焦作太极徐阅读 313评论 0 0
  • 今天,我去了青岛崂山的仰口和北九水,因为崂山是中国的五星级景区,所以途中哪都很漂亮。 我们先去崂山的九...
    穆靖洋阅读 353评论 0 2
  • 这天天空刚刚下过一场雨,雨水把天空洗净。花儿走在回家的路上,低头看见路旁的小草儿,草儿的叶子上挂着几颗珍珠。花儿...
    三更笙阅读 340评论 0 1
  • 昨天我们解读了现金流量表,对其中三大指标“经营活动现金流量、投资活动现金流量、筹资活动现金流量”做了具体分析和实例...
    晓燕读财报阅读 894评论 0 5