2021-07-03

 golang 行情推送[1]的分享,有人针对 ppt 的内容问了我两个问题,一个是在 docker 下 golang 的 gomaxprocs 初始化混乱问题,另一个是 golang runtime.gomaxprocs 配置多少为合适?

golang runtime

Golang 的 runtime 调度是依赖 pmg 的角色抽象,p 为逻辑处理器,m 为执行体(线程),g 为协程。p 的 runq 队列中放着可执行的 goroutine 结构。golang 默认 p 的数量为 cpu core 数目,比如物理核心为 8 cpu core,那么 go processor 的数量就为 8。另外,同一时间一个 p 只能绑定一个 m 线程,pm 绑定后自然就找 g 和运行 g。

那么增加 processor 的数量,是否可以用来加大 runtime 对于协程的调度吞吐?

大多 golang 的项目偏重网络 io,network io 在 netpoll 设计下都是非阻塞的,所涉及到的 syscall 不会阻塞。如果是 cpu 密集的业务,增加多个 processor 也没用,毕竟 cpu 计算资源就这些,居然还想着来回的切换?😅 所以,多数场景下单纯增加 processor 是没什么用的。

当然,话不绝对,如果你的逻辑含有不少的 cgo 及阻塞 syscall 的操作,那么增加 processor 还是有效果的,最少在我实际项目中有效果。原因是这类操作有可能因为过慢引起阻塞,在阻塞期间的 p 被 mg 绑定一起,其他 m 无法获取 p 的所有权。虽然在 findrunnable steal 机制里,其他 p 的 m 可以偷该 p 的任务,但在解绑 p 之前终究还是少了一条并行通道。另外,runtime 的 sysmon 周期性的检查长时间阻塞的 pmg, 并抢占并解绑 p。

golang 在 docker 下的问题

在微服务体系下服务的部署通常是放在 docker 里的。一个宿主机里跑着大量的不同服务的容器。为了避免资源冲突,通常会合理地对每个容器做 cpu 资源控制。比如给一个 golang 服务的容器限定了 2 cpu core 的资源,容器内的服务不管怎么折腾,也确实只能用到大约 2 个 cpu core 的资源。

但 golang 初始化 processor 数量是依赖 /proc/cpuinfo 信息的,容器内的 cpuinfo 是跟宿主机一致的,这样导致容器只能用到 2 个 cpu core,但 golang 初始化了跟物理 cpu core 相同数量的 processor。

// xiaorui.cc

限制2核左右

root@xiaorui.cc:~# docker run -tid --cpu-period 100000 --cpu-quota 200000 ubuntu

容器内

root@a4f33fdd0240:/# cat /proc/cpuinfo| grep "processor"| wc -l

48

runtime processor 多了会出现什么问题?

一个是 runtime findrunnable 时产生的损耗,另一个是线程引起的上下文切换。

runtime 的 findrunnable 方法是解决 m 找可用的协程的函数,当从绑定 p 本地 runq 上找不到可执行的 goroutine 后,尝试从全局链表中拿,再拿不到从 netpoll 和事件池里拿,最后会从别的 p 里偷任务。全局 runq 是有锁操作,其他偷任务使用了 atomic 原子操作来规避 futex 竞争下陷入切换等待问题,但 lock free 在竞争下也会有忙轮询的状态,比如不断的尝试。

// xiaorui.cc

// 全局 runq

ifsched.runqsize !=0{

lock(&sched.lock)

gp := globrunqget(_p_,0)

unlock(&sched.lock)

ifgp !=nil{

returngp,false

}

}

...

// 尝试4次从别的p偷任务

fori :=0; i <4; i++ {

forenum := stealOrder.start(fastrand()); !enum.done(); enum.next() {

ifsched.gcwaiting !=0{

gototop

}

stealRunNextG := i >2// first look for ready queues with more than 1 g

ifgp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp !=nil{

returngp,false

}

}

}

...

通过 godebug 可以看到全局队列及各个 p 的 runq 里等待调度的任务量。有不少 p 是空的,那么势必会引起 steal 偷任务。另外,runqueue 的大小远超其他 p 的总和,说明大部分任务在全局里,全局又是把大锁。

随着调多 runtime processor 数量,相关的 m 线程自然也就跟着多了起来。linux 内核为了保证可执行的线程在调度上雨露均沾,按照内核调度算法来切换就绪状态的线程,切换又引起上下文切换。上下文切换也是性能的一大杀手。findrunnable 的某些锁竞争也会触发上下文切换。

下面是我这边一个行情推送服务压测下的 vmstat 监控数据。首先把容器的的 cpu core 限制为 8,再先后测试 processor 为 8 和 48 的情况。图的上面是 processor 为 8 的情况,下面为 processor 为 48 的情况。看图可以直观地发现当 processor 调大后,上下文切换(cs)明显多起来,另外等待调度的线程也多了。

另外从 qps 的指标上也可以反映多 processor 带来的性能损耗。通过下图可以看到当 runtime.GOMAXPROCS 为固定的 cpu core 数时,性能最理想。后面随着 processor 数量的增长,qps 指标有所下降。

通过 golang tool trace 可以分析出协程调度等待时间越来越长了。

解决 docker 下的 golang gomaxprocs 校对问题

有两个方法可以准确校对 golang 在 docker 的 cpu 获取问题。

要么在 k8s pod 里加入 cpu 限制的环境变量,容器内的 golang 服务在启动时获取关于 cpu 的信息。

要么解析 cpu.cfs_period_us 和 cpu.cfs_quota_us 配置来计算 cpu 资源。社区里有不少这类的库可以使用,uber的automaxprocs[2]可以兼容 docker 的各种 cpu 配置。

总结

建议 gomaxprocs 配置为 cpu core 数量就可以了,Go 默认就是这个配置,无需再介入。如果涉及到阻塞 syscall,可以适当的调整 gomaxprocs 大小,但一定要用指标数据说话!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容