Mysql索引底层原理

索引的本质是什么?

索引是帮助MySql高效获取数据的排好序的数据结构

索引的数据结构有哪些?

1、二叉树
2、红黑树
3、Hash表
4、B-tree

索引中的数据是如何进行存储的?

建立索引的节点是以key+value的方式进行存储的,key就是索引字段,value是索引字段所在这一行的磁盘地址,最后根据磁盘地址获取该行所有数据

二叉树的特点和不足?

二叉树的特点就是节点右边的数据比该父节点大,左边的数据比该父节点小
缺点:对于单边增长的数据、放在二叉树中最后会变成链表、对于数据查询没有优化。

红黑树的特点和不足?

红黑树也叫做平衡二叉树,当二叉树单边增长太过分,底层会进行平衡
缺点:随着数据量的增大,树的深度会无线扩大、当要查找的是最底层的叶子节点,数据量太大是,查询效率较慢。

B树的特点是什么?

1、叶节点具有相同的深度、叶节点的指针为空
2、所有索引元素不重复
3、节点中的数据索引从左到右递增排序

B+树的特点是什么?

1、非叶子节点不存储data,只存储索引(冗余),可以放更多索引
2、叶子节点包含所有索引字段
3、叶子节点用指针连接,提高区间访问的性能

MySQL的存储引擎作用在哪里?

Mysql的存储引擎作用在表上、也可以作用于库上

MyIsAm和Innodb的特点?

Myisam的存储引擎底层就是B+树来实现的,Myisam索引文件和数据文件是分离的(非聚集)
Innodb的存储引擎也是B+树,但是使用的是聚集索引,聚集索引就是将叶子节点的索引和其他对应的数据值绑在一起,效率更高
1、表数据文件本身就是按B+树组织的一个索引结构文件
2、聚集索引的叶子节点包含了完整的数据记录
3、Innodb表必须要有主键,并且推荐使用整形的自增主键

什么是联合索引和最左前缀匹配原则?

Mysql建立联合索引时会遵循最左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配
为什么要使用联合索引?

减少开销。建一个联合索引(Gid,Cid,SId),实际相当于建了(Gid)、(Gid,Cid)、(Gid,Cid,SId)三个索引。每多一个索引,都会增加写操作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!

覆盖索引。对联合索引(Gid,Cid,SId),如果有如下的sql: select Gid,Cid,SId from student where Gid=1 and Cid=2。那么MySQL可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机io操作。减少io操作,特别的随机io其实是dba主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。

效率高。索引列越多,通过索引筛选出的数据越少。有1000W条数据的表,有如下sql:select from table where Gid=1 and Cid=2 and SId=3,假设假设每个条件可以筛选出10%的数据,如果只有单值索引,那么通过该索引能筛选出1000W10%=100w条数据,然后再回表从100w条数据中找到符合Gid=2 and Cid= 3的数据,然后再排序,再分页;如果是联合索引,通过索引筛选出1000w10% 10% *10%=1w,效率提升可想而知!

缺点。联合索引越多,索引列越多,则创建的索引越多,索引都是存储在磁盘里的,通过索引算法(Btree代表索引算法使用二叉树的形式来做索引的)来查找数据,的确可以极大的提高查询效率,但是与此同时增删改的同时,需要更新索引,同样是需要花时间的,并且索引所占的磁盘空间也不小。

建议。单表尽可能不要超过一个联合索引,单个联合索引不超过3个字段。

推荐网站,可以演示各种数据结构:https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
mysql索引数据结构推荐学习博客:
https://www.cnblogs.com/nijunyang/p/11406688.html
联合索引最佳匹配原则推荐学习博客:
https://blog.csdn.net/qq_27559331/article/details/89632566

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容