1. 线性规划:单纯形法python代码

1. 模型

常见的线性规划模型如下:
max z = cx
s.t. Ax = b

2. 求解步骤

假设B是基变量集合,通过矩阵的线性变换,基变量可由非基变量表示:
x'i = ci + Σj∉Bmi,jx'j (i∈B)
目标函数z也可以完全由非基变量表示:
z = z0 + Σj∉Bcjx'j
当达到最优解时,目标函数中所有的系数c≤0,这样非基变量等于0时,目标函数可以取到最大值。以此为目标,每次将最大的正系数max{ci}对应的非基变量替换为基变量,同时将min{bj/ai,j}对应的基变量替换为非基变量。这个进基/出基的过程称为pivoting。

3. python算法实现

这里假设原问题都是小于等于约束,这样添加松弛变量之后,问题一定有初始可行解;同时假设问题存在有限最优解。特殊情况将在下一节进行处理。代码为:

import numpy as np

def pivot():
    l = list(d[0][:-2])
    jnum = l.index(max(l)) #转入编号
    m = []
    for i in range(bn):
        if d[i][jnum] == 0:
            m.append(0.)
        else:
            m.append(d[i][-1]/d[i][jnum])
    inum = m.index(min([x for x in m[1:] if x!=0]))  #转出下标
    s[inum-1] = jnum
    r = d[inum][jnum]
    d[inum] /= r
    for i in [x for x in range(bn) if x !=inum]:
        r = d[i][jnum]
        d[i] -= r * d[inum]
        
def solve():
    flag = True
    while flag:
        if max(list(d[0][:-1])) <= 0: #直至所有系数小于等于0
            flag = False
        else:
            pivot()
            
def printSol():
    for i in range(cn - 1):
        if i in s:
            print("x"+str(i)+"=%.2f" % d[s.index(i)+1][-1])
        else:
            print("x"+str(i)+"=0.00")
    print("objective is %.2f"%(-d[0][-1]))

调用的例子:

d = np.loadtxt("data.txt", dtype=np.float)
(bn,cn) = d.shape
s = list(range(cn-bn,cn-1)) #基变量列表
solve()
printSol()

data.txt文件中的内容为:


1 14 6 0 0 0 0 0

1 1 1 1 0 0 0 4

1 0 0 0 1 0 0 2

0 0 1 0 0 1 0 3

0 3 1 0 0 0 1 6

代表的求解模型是:

max z = x0+14*x1+6*x2

s.t.

x0 + x1 + x2 <= 4

x0 <= 2

x2 <= 3

3*x1 + x2 <= 6

运行后输出结果为:

x0=0.00

x1=1.00

x2=3.00

x3=0.00

x4=2.00

x5=0.00

x6=0.00

objective is 32.00

4. 后感

将simplex用代码写出来,才觉得以前纠结那么久的问题原来那么简单。两三行代码能说清楚的事,何必写一堆看得人眼花缭乱的数学公式呢。
另外,线性规划还有一些很基础的理论要掌握好:

  1. 极点和极方向的理论,这个是单纯型法的理论基础。可以参考https://wenku.baidu.com/view/1a60ce6125c52cc58bd6be23.html
  2. 对偶理论,这个在以后经常会用到。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354

推荐阅读更多精彩内容