Kafka的日志管理模块--LogManager

  • 这里说的日志不是为了追踪程序运行而打的日志,指的是Kafka接受到消息后将消息写入磁盘或从磁盘读取的子系统;
  • 它负责Log的创建,遍历,清理,读写等;
  • LogManager统领所有的Log对象, 具体的读写操作还是要转给Log对象,Log对象又包含若干个LogSegment, 一层套一层,逐层分解;
  • 它支持将本地的多个文件夹作出日志的存储目录;

LogManager
  • 所在文件:core/src/main/scala/kafka/log/LogManager.scala
  • LogManager的创建:
    1. 在KafkaServer启动时创建,通过调用 `KafkaServer.createLogManager实现。
  1. 每个Topic都可以单独设置自己Log的过期时间,roll大小等,这些信息存储在zk上,因此集群管理员可以通过调整zk上的相应配置,在不重启整个集群的前提下,动态调整这些信息;
  • LogManager的初始化:
  1. private val logs = new Pool[TopicAndPartition, Log](): 使用Pool管理所有的Log对象;
  2. createAndValidateLogDirs(logDirs): 目前支持将本地的多个文件夹作出日志的存储目录,因为需要创建和验证这些目录的有效性, 我们来看下是如何作的:
if(dirs.map(_.getCanonicalPath).toSet.size < dirs.size)
      throw new KafkaException("Duplicate log directory found: " + logDirs.mkString(", "))
    for(dir <- dirs) {
      if(!dir.exists) {
        info("Log directory '" + dir.getAbsolutePath + "' not found, creating it.")
        val created = dir.mkdirs()
        if(!created)
          throw new KafkaException("Failed to create data directory " + dir.getAbsolutePath)
      }
      if(!dir.isDirectory || !dir.canRead)
        throw new KafkaException(dir.getAbsolutePath + " is not a readable log directory.")
    }

判断是否有重复的log目录; 目录如不存在,则创建; 目录是否可读;

  1. val dirLocks = lockLogDirs(logDirs):使用文件锁锁定目录
dirs.map { dir =>
      val lock = new FileLock(new File(dir, LockFile))
      if(!lock.tryLock())
        throw new KafkaException("Failed to acquire lock on file .lock in " + lock.file.getParentFile.getAbsolutePath + 
                               ". A Kafka instance in another process or thread is using this directory.")
      lock
    }
  1. recoveryPointCheckpoints = logDirs.map(dir => (dir, new OffsetCheckpoint(new File(dir, RecoveryPointCheckpointFile)))).toMap: 创建每个目录中的recovery-point-offset-checkpoint文件(这个文件里记录的各个offset之前的数据均已落盘成功)的读取类对象;
  2. def loadLogs(): Unit: 恢复并且加载日志目录中的日志文件, 针对每个LogDir分别处理
val threadPools = mutable.ArrayBuffer.empty[ExecutorService]
    val jobs = mutable.Map.empty[File, Seq[Future[_]]]

    for (dir <- this.logDirs) {
      val pool = Executors.newFixedThreadPool(ioThreads)
      threadPools.append(pool)

      val cleanShutdownFile = new File(dir, Log.CleanShutdownFile)

      if (cleanShutdownFile.exists) {
        debug(
          "Found clean shutdown file. " +
          "Skipping recovery for all logs in data directory: " +
          dir.getAbsolutePath)
      } else {
        // log recovery itself is being performed by `Log` class during initialization
        brokerState.newState(RecoveringFromUncleanShutdown)
      }

      var recoveryPoints = Map[TopicAndPartition, Long]()
      try {
        recoveryPoints = this.recoveryPointCheckpoints(dir).read
      } catch {
        case e: Exception => {
          warn("Error occured while reading recovery-point-offset-checkpoint file of directory " + dir, e)
          warn("Resetting the recovery checkpoint to 0")
        }
      }

      val jobsForDir = for {
        dirContent <- Option(dir.listFiles).toList
        logDir <- dirContent if logDir.isDirectory
      } yield {
        CoreUtils.runnable {
          debug("Loading log '" + logDir.getName + "'")

          val topicPartition = Log.parseTopicPartitionName(logDir)
          val config = topicConfigs.getOrElse(topicPartition.topic, defaultConfig)
          val logRecoveryPoint = recoveryPoints.getOrElse(topicPartition, 0L)

          val current = new Log(logDir, config, logRecoveryPoint, scheduler, time)
          val previous = this.logs.put(topicPartition, current)

          if (previous != null) {
            throw new IllegalArgumentException(
              "Duplicate log directories found: %s, %s!".format(
              current.dir.getAbsolutePath, previous.dir.getAbsolutePath))
          }
        }
      }

      jobs(cleanShutdownFile) = jobsForDir.map(pool.submit).toSeq
    }
    try {
      for ((cleanShutdownFile, dirJobs) <- jobs) {
        dirJobs.foreach(_.get)
        cleanShutdownFile.delete()
      }
    } catch {
      case e: ExecutionException => {
      }
    } finally {
      threadPools.foreach(_.shutdown())
    }
    info("Logs loading complete.")
  }

a. 如果kafka进程是优雅干净地退出的,会创建一个名为.kafka_cleanshutdown的文件作为标识;
b. 启动kafka时, 如果不存在该文件, 则broker的状态进入到
RecoveringFromUncleanShutdown
c. 针对dir下的每个topic子目录, 创建Log对象, 此对象在创建过程中会加载,恢复实际的消息, 每个这样的过程跑在一个使用**CoreUtils.runnable **创建的Job里, job再提交到线程池执行, 实际上是生成一个Feture,
d. 等待c中所有的job都执行完, 以便完成所有的log加载,恢复过程;

  1. def startup(): 启动一个LogManager, 实际上是启动若干个定时任务:
scheduler.schedule("kafka-log-retention", 
                         cleanupLogs, 
                         delay = InitialTaskDelayMs, 
                         period = retentionCheckMs, 
                         TimeUnit.MILLISECONDS)
      scheduler.schedule("kafka-log-flusher", 
                         flushDirtyLogs, 
                         delay = InitialTaskDelayMs, 
                         period = flushCheckMs, 
                         TimeUnit.MILLISECONDS)
      scheduler.schedule("kafka-recovery-point-checkpoint",
                         checkpointRecoveryPointOffsets,
                         delay = InitialTaskDelayMs,
                         period = flushCheckpointMs,
                         TimeUnit.MILLISECONDS)
    }
    if(cleanerConfig.enableCleaner)
      cleaner.startup()

我们来过一遍:
a. checkpointRecoveryPointOffsets: 将每个Topic-Partition的recovery-point(这个值就是已经落盘的offset值,因为有些log可能还在pagecache里,没有落盘)写入到recovery-point文件;
b. flushDirtyLogs: 针对每一个Log对象,如果flush时间到,就调用log->flush, 将pagecache中的消息落盘;
c. cleanupLogs: 针对清除策略是删除而不是压缩的Log, 依照时间和文件大小作清理:

 for(log <- allLogs; if !log.config.compact) {
      debug("Garbage collecting '" + log.name + "'")
      total += cleanupExpiredSegments(log) + cleanupSegmentsToMaintainSize(log)
    }

e. cleaner.startup(): 对日志不是删除, 而是采取压缩策略, 后面会专门讲下这个;

  1. def createLog(topicAndPartition: TopicAndPartition, config: LogConfig): Log: 创建Log对象, 使用nextLogDir()来选取当前log所在的目录;
  2. def deleteLog(topicAndPartition: TopicAndPartition): 移除Log;
  3. def truncateTo(partitionAndOffsets: Map[TopicAndPartition, Long]): 截取log到指定的offset, 同时写recovery-point文件:
for ((topicAndPartition, truncateOffset) <- partitionAndOffsets) {
      val log = logs.get(topicAndPartition)
      // If the log does not exist, skip it
      if (log != null) {
        //May need to abort and pause the cleaning of the log, and resume after truncation is done.
        val needToStopCleaner: Boolean = (truncateOffset < log.activeSegment.baseOffset)
        if (needToStopCleaner && cleaner != null)
          cleaner.abortAndPauseCleaning(topicAndPartition)
        log.truncateTo(truncateOffset)
        if (needToStopCleaner && cleaner != null)
          cleaner.resumeCleaning(topicAndPartition)
      }
    }
    checkpointRecoveryPointOffsets()
大致LogManager的内容就这么多

Kafka源码分析-汇总

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容