【转】精确率、召回率、F1 值、ROC、AUC

【在知乎上看到一篇介绍精确率、召回率、F1 值、ROC、AUC的文章,通俗易懂】
原文链接

正好最近刚做了个项目是关于imbalanced data的,又深入研究了一把各种evaluation metric,在这儿分享一下。

准确率 - accuracy

精确率 - precision

召回率 - recall

F1值 - F1-score

ROC曲线下面积 - ROC-AUC (area under curve)

PR曲线下面积 - PR-AUC

首先,accuracy是最常见也是最基本的evaluation metric。但在binary classification 且正反例不平衡的情况下,尤其是我们对minority class 更感兴趣的时候,accuracy评价基本没有参考价值。什么fraud detection(欺诈检测),癌症检测,都符合这种情况。举个栗子:

在测试集里,有100个sample,99个反例,只有1个正例。如果我的模型不分青红皂白对任意一个sample都预测是反例,那么我的模型的accuracy是 正确的个数/总个数 = 99/100 = 99%

你拿着这个accuracy高达99%的模型屁颠儿屁颠儿的去预测新sample了,而它一个正例都分不出来,有意思么。。。

也有人管这叫accuracy paradox。

那么,除了accuracy以外有没有什么别的更有用的metric呢?

有,precision 和 recall。上个图帮助说明一下。

image

我的理解呢,就是,

  • recall是相对真实的答案而言: true positive / golden set 。假设测试集里面有100个正例,你的模型能预测覆盖到多少,如果你的模型预测到了40个正例,那你的recall就是40%。
  • precision是相对你自己的模型预测而言:true positive /retrieved set。假设你的模型一共预测了100个正例,而其中80个是对的正例,那么你的precision就是80%。我们可以把precision也理解为,当你的模型作出一个新的预测时,它的confidence score 是多少,或者它做的这个预测是对的的可能性是多少。
  • 一般来说呢,鱼与熊掌不可兼得。如果你的模型很贪婪,想要覆盖更多的sample,那么它就更有可能犯错。在这种情况下,你会有很高的recall,但是较低的precision。如果你的模型很保守,只对它很sure的sample作出预测,那么你的precision会很高,但是recall会相对低。

这样一来呢,我们可以选择只看我们感兴趣的class,就是minority class的precision,recall来评价模型的好坏。

F1-score就是一个综合考虑precision和recall的metric: 2precisionrecall / (precision + recall)

基本上呢,问题就是如果你的两个模型,一个precision特别高,recall特别低,另一个recall特别高,precision特别低的时候,f1-score可能是差不多的,你也不能基于此来作出选择。

在multi-class classification的情况下,如果非要用一个综合考量的metric的话,macro-average(宏平均) 会比 micro-average(微平均) 好一些哦,因为macro会受minority class影响更大,也就是说更能体现在small class上的performance。(宏平均F1与微平均F1是以两种不同的平均方式求的全局的F1指标。其中宏平均F1的计算方法先对每个类别单独计算F1值,再取这些F1值的算术平均值作为全局指标。而微平均F1的计算方法是先累加计算各个类别的a、b、c、d的值,再由这些值求出F1值。由两种平均F1的计算方式不难看出,宏平均F1平等对待每一个类别,所以它的值主要受到稀有类别的影响,而微平均F1平等考虑文档集中的每一个文档,所以它的值受到常见类别的影响比较大。)

除了precision,recall,还有别的metric哦。基本上就是把true positive,true negative,false positive,false negative各种瞎JB组合。。

这里介绍两个ROC curve会见到的:sensitivity和specificity。

sensitivity = recall = true positive rate

specificity = 1- false positive rate

这两个metric有什么高级的呢?且听我细细说来。

假设我们的minority class,也就是正例,是1。反例,为0。


image

是真实label Y的估计(estimate)。

image

看出来没有,sensitivity和specificity是条件于真实label Y的概率的。我们讲这个叫条件概率嘛。那么意思就是说,无论Y的真实概率是多少,都不会影响sensitivity和specificity。也就是说,这两个metric是不会受imbalanced data 影响的,那就很客观了啊,是不是!而precision呢,就会随着你的测试集里面的正反比例而变化哦。

好了,终于说到我们的ROC curve了。这个曲线呢,就是以true positive rate 和 false positive rate为轴,取不同的threshold点画的啦。有人问了,threshold是啥子哦。这么说吧,每个分类器作出的预测呢,都是基于一个probability score的。一般默认的threshold呢都是0.5,如果probability>0.5,那么这个sample被模型分成正例了哈,反之则是反例。

image

关于这个曲线,大家答的已经很充分了。基本上,曲线下的面积(AUC)越大,或者说曲线更接近左上角(true positive rate=1, false positive rate=0),那么模型就越理想,越好。ROC curve 可以很好的回答什么问题呢——“不论class的基本概率怎么样,我的模型in general能表现得多好?”

一般来说呢,最优的threshold就是橙色曲线离蓝色虚线(基准线)最远的一点啦,或者橙色曲线上离左上角最近的一点,再或者是根据用户自己定义的cost function来的。这里有详细的具体怎么实现。http://www.medicalbiostatistics.com/roccurve.pdf

相对的, 还有一个PR curve,就是以precision recall为轴,取不同的threshold画的哈。刚才说的鱼与熊掌不可兼得的trade-off也可以看的出来哈。

image

同样的,曲线下的面积(AUC)越大,或者说曲线更接近右上角(precision=1, recall=1),那么模型就越理想,越好。

如果在我们所说的fraud detection 或者癌症检测这一类应用中,我们的倾向肯定是“宁可错杀一千,不可放过一个”呀。所以我们可以设定在合理的precision下,最高的recall作为最优点,找到这个对应的threshold点。

总结,我们可以根据具体的应用或者偏好,在曲线上找到最优的点,得到相对应的precision,recall,sensitivity,specificity,去调整模型的threshold,从而得到一个符合具体应用的模型。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容