pytorch做二分类,多分类以及回归任务

【lightgbm/xgboost/nn代码整理四】pytorch做二分类,多分类以及回归任务

1.简介

本不打算整理pytorch代码,因为在数据挖掘类比赛中没有用过它,做图像相关任务时用pytorch比较多。有个小哥提到让整理一下,就花了几天时间整理了一份,没有很仔细调试过,有问题请读者指出。下面将从数据处理、网络搭建和模型训练三个部分介绍。如果只是想要阅读代码,可直接移步到尾部链接。

2. 数据处理

参考上一节的数据处理

3.模型

pytorch 定义的mlp代码如下:

class MLP(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output, dropout=0.5):
        super(MLP, self).__init__()
        self.dropout = torch.nn.Dropout(dropout)

        self.hidden_1 = torch.nn.Linear(n_feature, n_hidden)  # hidden layer
        self.bn1 = torch.nn.BatchNorm1d(n_hidden)

        self.hidden_2 = torch.nn.Linear(n_hidden, n_hidden//2)
        self.bn2 = torch.nn.BatchNorm1d(n_hidden//2)

        self.hidden_3 = torch.nn.Linear(n_hidden//2, n_hidden//4)  # hidden layer
        self.bn3 = torch.nn.BatchNorm1d(n_hidden//4)

        self.hidden_4 = torch.nn.Linear(n_hidden // 4, n_hidden // 8)  # hidden layer
        self.bn4 = torch.nn.BatchNorm1d(n_hidden // 8)

        self.out = torch.nn.Linear(n_hidden//8, n_output)  # output layer

    def forward(self, x):
        x = F.relu(self.hidden_1(x))  # activation function for hidden layer
        x = self.dropout(self.bn1(x))
        x = F.relu(self.hidden_2(x))  # activation function for hidden layer
        x = self.dropout(self.bn2(x))
        x = F.relu(self.hidden_3(x))  # activation function for hidden layer
        x = self.dropout(self.bn3(x))
        x = F.relu(self.hidden_4(x))  # activation function for hidden layer
        x = self.dropout(self.bn4(x))
        x = self.out(x)
        return x

定义的网路结构和上一节keras中定义的一样,同样也添加了dropout层和bn层。不同之处这个网络最终的输出都是线性输出。

训练和预测

4.1 数据加载

pytorch是以tensor的形式加载数据,需要将数据转为tenser格式,如果有gpu处理器,并且安装的也是gpu版本的pytorch,就可以使用gpu加速处理,通过DataLoader来加载数据,代码如下。

x_test = np.array(test_X)
x_test = torch.tensor(x_test, dtype=torch.float)
if torch.cuda.is_available():
    x_test = x_test.cuda()
test = TensorDataset(x_test)
test_loader = DataLoader(test, batch_size=batch_size, shuffle=False)

4.2 训练

model = MLP(x_train.shape[1], 512, classes, dropout=0.3)
if torch.cuda.is_available():
    model = model.cuda()
    
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
loss_fn = torch.nn.CrossEntropyLoss()  #多分类
#loss_fn = torch.nn.BCEWithLogitsLoss() #二分类
#loss_fn = torch.nn.L1Loss()   #回归

y_pred = model(x_batch)
loss = loss_fn(y_pred, y_batch)
optimizer.zero_grad()       
loss.backward()             
optimizer.step()            

定义完网络后,如果存在GPU,则需要将model也添加上gpu。优化函数同keras一样,都含有adam,sgd等。损失函数针对不同问题有所不同,在代码中已有标注,上面列出的分类任务都采用的是交叉熵损失函数,集成了最后一层的激活函数,如多分类的CrossEntropyLoss,它已经集成了softmax函数,且不需要对类别类别做onehot处理,直接输入int值即可。

  • optimizer.zero_grad():是为下一次训练清除梯度值
  • loss.backward()是反向传播,计算每个参数的梯度值
  • optimizer.step():是更新参数权重值包括,weights和biases

4.3 预测

在预测中eval()函数会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。代码如下

model.eval()
y_pred = model(x_batch)
test_preds_fold[i * batch_size:(i + 1) * batch_size] = y_pred.cpu().numpy()

由于计算的结果是tensor,需要转为numpy。

最终的结果转化同keras一样,如二分类需要设定阈值。

代码地址:data_mining_models

写在最后

关注公号:

AI成长社

ML与DL的成长圣地。
知乎专栏:ML与DL成长之路

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容