ELK 大规模日志实时处理系统应用简介

本文已经更新到 ELK 5.x 版本:http://www.jianshu.com/p/f3658d267b5d

What it is ?


ELK 是软件集合 Elasticsearch、Logstash、Kibana 的简称,由这三个软件及其相关的组件可以打造大规模日志实时处理系统。

其中,Elasticsearch 是一个基于 Lucene 的、支持全文索引的分布式存储和索引引擎,主要负责将日志索引并存储起来,方便业务方检索查询。

Logstash 是一个日志收集、过滤、转发的中间件,主要负责将各条业务线的各类日志统一收集、过滤后,转发给 Elasticsearch 进行下一步处理。

Kibana 是一个可视化工具,主要负责查询 Elasticsearch 的数据并以可视化的方式展现给业务方,比如各类饼图、直方图、区域图等。

所谓“大规模”指的是 ELK 组成的系统以一种水平扩展的方式每天支持收集、过滤、索引和存储 TB 规模以上的各类日志(注:1TB = 1024GB )。

通常,各类文本形式的日志都在处理范围,包括但不限于 Web 访问日志,如 Nginx/Apache Access Log;应用运行时日志,如 Swift/PHP/Python/Ruby/Java/C# 等构建的应用程序在执行业务过程中记录下来的日志。 

How it work ?


图 1. ELK 系统应用架构

上图是 ELK 实际应用中典型的一种架构,其中 Filebeat 部署在具体的业务机器上,通过定时监控的方式获取增量的日志,并转发 push 到 Redis 的一个 list 对象中暂存。

Redis 以高读写性能以及拥有支持 push/pop 操作的 list 数据结构的特征,作为一个缓冲队列的角色,接收所有从 Filebeat 收集转发过来的日志。

然后,Logstash 从 Redis 中获取日志,并通过 Input-Filter-Output 三个阶段的处理,更改或过滤日志,最终输出我们感兴趣的数据。

最后,Elasticsearch 存储并索引从 Logstash 转发过来的数据,并通过 Kibana 查询和可视化展示,达到实时分析日志的目的。

Getting started


我们一步步安装部署 ELK 系统的各个组件,然后以网站访问日志为例进行数据实时分析。(假定已经有部署好的 Nginx 服务器和 Redis 实例)

首先,到 ELK 官网下载需要用到的 Filebeat/Logstash/Elasticsearch/Kibana 软件安装包。(推荐下载编译好的二进制可执行文件,直接解压执行就可以部署)

1、下载并配置 Filebeat,开启日志增量监控

解压后的 Filebeat 包含以下三个文件:

解压后的 Filebeat

修改其中 filebeat.yml 的内容为:

filebeat.yml 配置文件示例

上述配置表示,Filebeat 每 10s 监控一次

/path/to/nginx/access/*.log

目录下所有以 .log 结尾的文件,并且将增量日志转发到 Redis 服务器。

然后,后台启动 Filebeat 进程:

nohup ./filebeat -c ./filebeat.yml & 

这时候,在浏览器上访问 Nginx 服务器并生成访问日志后,Filebeat 会及时的将日志转发到 Redis 服务器。转发的时候,Filebeat 会传输 JOSN 对象,而且原生的 Nginx 日志文本会作为 message 字段。

传输的 JOSN 对象

2、下载并配置 Logstash ,开启日志过滤

解压后的 Logstash 包含以下目录和文件:

Logstash 解压目录和文件

创建并编辑 filebeat-logstash-elastic.conf 文件,内容为:

Logstash 配置文件

配置文件主要分为三大部分: Input / Filter / Output,对应收集、过滤、转发三个阶段。显然,Input 阶段只需要指定 Redis 服务器相关信息即可,Output 阶段只需要指定 Elasticsearch 服务器相关的信息即可,比较复杂的是 Filter 过滤阶段。

可以看到,上述配置中,grok 插件使用正则表达式将 Nginx 日志的各个字段匹配出来,包括访问用户 ip 地址、请求时间和地址、服务器响应时间和响应字节以及用户标示 User-Agent 等。

然后,mutate、ruby、useragent、date、kv 等插件配合使用,过滤并获取到感兴趣的字段,最后输出如下示例的 JOSN 对象:

Logstash 转换后输出的 JSON 对象

这就是最终存储在 Elasticsearch 中的文档内容。

接下来,就可以启动 Logstash 进程了:

nohup ./bin/logstash agent -f ./filebeat-logstash-elastic.conf &

3、配置并启动 Elasticsearch 服务

下载并解压后,可以看到 ES 的目录和文件:

ES 目录和文件

修改 conf/elasticsearch.yml 内容如下:

ES 配置文件

指定文档和日志的存储路径以及监听的地址和端口即可。注意,应当保证有足够的磁盘空间来存储文档,否则 ES 将拒绝写入新数据。

环境变量 ES_HEAP_SIZE 被读取为 Elasticsearch 的最大内存空间,一般设置为你机器内存的一半即可: 

export ES_HEAP_SIZE=10g

然后,启动 ES 服务即可:

nohup ./bin/elasticsearch &

4、配置并启动 Kibana 服务

下载解压后的 Kibana 目录和文件:

Kibana 目录和文件

修改 conf/kibana.yml ,内容为:

 elasticsearch.url: "http://localhost:9200"

指定 ES 服务的地址和端口即可,然后启动 Kibana 进程:

nohup ./bin/kibana &

tips:最好手动退出一下终端

exit

否则,关闭终端后,Kibana 进程可能也停止运行了。

然后,就可以在浏览器访问 Kibana 了 http://10.142.86.182:5601/ (换成相应的 IP 地址访问)

Kibana 界面

注意:初次访问 Kibana 的时候,需要配置一个默认的 ES 索引,一般填写 logstash-* 即可。

接下来,就可以使用 Kibana 的可视化功能分析日志了:

Kibana Visualize 功能


Kibana 可视化数据分析

总结


综上,我们配置并部署了 ELK 的整套组件,实现了日志收集、过滤、索引和可视化的全部流程,基于这套系统我们就可以实时的了解业务运行状态。

tips:

ELK 各个组件运行过程中会产生大量的日志,所以需要注意日志处理,要么 > /dev/null 全部忽略,要么存储在大磁盘空间,否则可能写满磁盘导致进程被 killed

作者微博/微信 @Ceelog,转载请注明出处 ;)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容