AlphaZero 论文集

 

Nature 论文

Mastering the game of Go without human knowledge

Nature 550, 7676 (2017). doi:10.1038/nature24270

Authors: David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel & Demis Hassabis

网址:https://www.nature.com/nature/journal/v550/n7676/full/nature24270.html

请下载pdf查看!

Mastering the game of Go with deep neural networks and tree search

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, Demis Hassabis: Nature 529(7587): 484-489 (2016)

Papers

Mastering the Game of Go without Human Knowledge

https://deepmind.com/documents/119/agz_unformatted_nature.pdf

Human level control with deep reinforcement learning

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

Play Atari game with deep reinforcement learning

https://www.cs.toronto.edu/%7Evmnih/docs/dqn.pdf

Prioritized experience replay

https://arxiv.org/pdf/1511.05952v2.pdf

Dueling DQN

https://arxiv.org/pdf/1511.06581v3.pdf

Deep reinforcement learning with double Q Learning

https://arxiv.org/abs/1509.06461

Deep Q learning with NAF

https://arxiv.org/pdf/1603.00748v1.pdf

Deterministic policy gradient

http://jmlr.org/proceedings/papers/v32/silver14.pdf

Continuous control with deep reinforcement learning) (DDPG)

https://arxiv.org/pdf/1509.02971v5.pdf

Asynchronous Methods for Deep Reinforcement Learning

https://arxiv.org/abs/1602.01783

Policy distillation

https://arxiv.org/abs/1511.06295

Control of Memory, Active Perception, and Action in Minecraft

https://arxiv.org/pdf/1605.09128v1.pdf

Unifying Count-Based Exploration and Intrinsic Motivation

https://arxiv.org/pdf/1606.01868v2.pdf

Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

https://arxiv.org/pdf/1507.00814v3.pdf

Action-Conditional Video Prediction using Deep Networks in Atari Games

https://arxiv.org/pdf/1507.08750v2.pdf

Control of Memory, Active Perception, and Action in Minecraft

https://web.eecs.umich.edu/~baveja/Papers/ICML2016.pdf

PathNet

https://arxiv.org/pdf/1701.08734.pdf

Papers for NLP

Coarse-to-Fine Question Answering for Long Documentshttps://homes.cs.washington.edu/~eunsol/papers/acl17eunsol.pdfADeep Reinforced Model for Abstractive Summarizationhttps://arxiv.org/pdf/1705.04304.pdfReinforcementLearning for Simultaneous Machine Translationhttps://www.umiacs.umd.edu/~jbg/docs/2014_emnlp_simtrans.pdfDualLearning for Machine Translationhttps://papers.nips.cc/paper/6469-dual-learning-for-machine-translation.pdfLearningto Win by Reading Manuals in a Monte-Carlo Frameworkhttp://people.csail.mit.edu/regina/my_papers/civ11.pdfImprovingInformation Extraction by Acquiring External Evidence with Reinforcement Learninghttp://people.csail.mit.edu/regina/my_papers/civ11.pdfDeepReinforcement Learning with a Natural Language Action Spacehttp://www.aclweb.org/anthology/P16-1153DeepReinforcement Learning for Dialogue Generationhttps://arxiv.org/pdf/1606.01541.pdfReinforcementLearning for Mapping Instructions to Actionshttp://people.csail.mit.edu/branavan/papers/acl2009.pdfLanguageUnderstanding for Text-based Games using Deep Reinforcement Learninghttps://arxiv.org/pdf/1506.08941.pdfEnd-to-endLSTM-based dialog control optimized with supervised and reinforcement learninghttps://arxiv.org/pdf/1606.01269v1.pdfEnd-to-EndReinforcement Learning of Dialogue Agents for Information Accesshttps://arxiv.org/pdf/1609.00777v1.pdfHybridCode Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learninghttps://arxiv.org/pdf/1702.03274.pdfDeepReinforcement Learning for Mention-Ranking Coreference Modelshttps://arxiv.org/abs/1609.08667

精选文章

wikihttps://en.wikipedia.org/wiki/Reinforcement_learningDeepReinforcement Learning: Pong from Pixelshttp://karpathy.github.io/2016/05/31/rl/CS294: Deep Reinforcement Learninghttp://rll.berkeley.edu/deeprlcourse/强化学习系列之一:马尔科夫决策过程http://www.algorithmdog.com/%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0-%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E5%86%B3%E7%AD%96%E8%BF%87%E7%A8%8B强化学习系列之九:Deep Q Network (DQN)http://www.algorithmdog.com/drl强化学习系列之三:模型无关的策略评价http://www.algorithmdog.com/reinforcement-learning-model-free-evalution【整理】强化学习与MDPhttp://www.cnblogs.com/mo-wang/p/4910855.html强化学习入门及其实现代码http://www.jianshu.com/p/165607eaa4f9深度强化学习系列(二):强化学习http://blog.csdn.net/ikerpeng/article/details/53031551采用深度 Q 网络的 Atari 的 Demo:

Nature 上关于深度 Q 网络 (DQN) 论文:http://www.nature.com/articles/nature14236David视频里所使用的讲义pdfhttps://pan.baidu.com/s/1nvqP7dB什么是强化学习?http://www.cnblogs.com/geniferology/p/what_is_reinforcement_learning.htmlDavidSilver关于 深度确定策略梯度 DPG的论文http://www.jmlr.org/proceedings/papers/v32/silver14.pdfNature上关于 AlphaGo 的论文:http://www.nature.com/articles/nature16961AlphaGo相关的资源http://deepmind.com/research/alphago/What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/DeepLearning in a Nutshell: Reinforcement Learninghttps://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-reinforcement-learning/Bellmanequationhttps://en.wikipedia.org/wiki/Bellman_equationReinforcementlearninghttps://en.wikipedia.org/wiki/Reinforcement_learningMasteringthe Game of Go without Human Knowledgehttps://deepmind.com/documents/119/agz_unformatted_nature.pdfReinforcementLearning(RL) for Natural Language Processing(NLP)https://github.com/adityathakker/awesome-rl-nlp

视频教程

强化学习教程(莫烦)https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/强化学习课程 by David Silverhttps://www.bilibili.com/video/av8912293/?from=search&seid=1166472326542614796CS234:Reinforcement Learninghttp://web.stanford.edu/class/cs234/index.html什么是强化学习? (Reinforcement Learning)https://www.youtube.com/watch?v=NVWBs7b3oGk什么是 Q Learning (Reinforcement Learning 强化学习)https://www.youtube.com/watch?v=HTZ5xn12AL4强化学习-莫烦https://morvanzhou.github.io/tutorials/machine-learning/ML-intro/DavidSilver深度强化学习第1课 - 简介 (中文字幕)https://www.bilibili.com/video/av9831889/DavidSilver的这套视频公开课(Youtube)https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxTDavidSilver的这套视频公开课(Bilibili)http://www.bilibili.com/video/av9831889/?from=search&seid=17387316110198388304Deep Reinforcement Learninghttp://videolectures.net/rldm2015_silver_reinforcement_learning/

Tutorial

Reinforcement Learning for NLPhttp://www.umiacs.umd.edu/~jbg/teaching/CSCI_7000/11a.pdfICML2016, Deep Reinforcement Learning tutorialhttp://icml.cc/2016/tutorials/deep_rl_tutorial.pdfDQN tutorialhttps://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-4-deep-q-networks-and-beyond-8438a3e2b8df#.28wv34w3a

代码

OpenAI Gymhttps://github.com/openai/gymGoogleDeepMind 团队深度 Q 网络 (DQN) 源码:http://sites.google.com/a/deepmind.com/dqn/ReinforcementLearningCodehttps://github.com/halleanwoo/ReinforcementLearningCodereinforcement-learninghttps://github.com/dennybritz/reinforcement-learningDQNhttps://github.com/devsisters/DQN-tensorflowDDPGhttps://github.com/stevenpjg/ddpg-aigymA3C01https://github.com/miyosuda/async_deep_reinforceA3C02https://github.com/openai/universe-starter-agent

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容