递归
反转字符串
这个以前实现过, 这次试用递归的方式实现。
func reverseString(s []byte) {
helper(0 , len(s) -1 , s)
}
func helper(start int , end int , s []byte) {
if end < start {
return
}
s[start] , s[end] = s[end] ,s[start]
helper(start+1 , end-1 , s)
}
两两交换链表中的节点
不知道如何试用递归来完成。不过会在以后的补充。
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func swapPairs(head *ListNode) *ListNode {
if head == nil {
return head
}
current := head
next := head.Next
for current != nil && next != nil {
current.Val , next.Val = next.Val , current.Val
current = next.Next
if current == nil || next.Next == nil {
break
} else {
next = current.Next
}
}
return head
}
斐波那契数列
func fib(N int) int {
if N == 0 {
return 0
}
if N == 1 {
return 1
}
return fib(N-1) + fib(N-2)
}
爬楼梯
func climbStairs(n int) int {
if n < 2 {
return 1
}
tmp := []int{1, 2}
for i := 2; i < n; i++ {
tmp = append(tmp, tmp[i-1]+tmp[i-2])
}
return tmp[n-1]
}
二叉树的最大深度
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func maxDepth(root *TreeNode) int {
if root == nil {
return 0
}
l := maxDepth(root.Left)
r := maxDepth(root.Right)
return max(l, r) + 1
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
Pow()
func myPow(x float64, n int) float64 {
if x == 0 {
return 0
}
result := calPow(x, n)
if n < 0 {
result = 1 / result
}
return result
}
func calPow(x float64, n int) float64 {
if n == 0 {
return 1
}
if n == 1 {
return x
}
// 向右移动一位
result := calPow(x, n>>1)
result *= result
// 如果n是奇数
if n&1 == 1 {
result *= x
}
return result
}
第K个语法符号
用C++ 更简单
class Solution {
public:
int kthGrammar(int N, int K) {
int res = 0;
while (K > 1) {
K = (K % 2 == 1) ? K + 1 : K / 2;
res ^= 1;
}
return res;
}
};
不同的二叉搜索树 II
class Solution {
public:
vector<TreeNode *> generateTrees(int n) {
if (n == 0) return {};
return *generateTreesDFS(1, n);
}
vector<TreeNode*> *generateTreesDFS(int start, int end) {
vector<TreeNode*> *subTree = new vector<TreeNode*>();
if (start > end) subTree->push_back(NULL);
else {
for (int i = start; i <= end; ++i) {
vector<TreeNode*> *leftSubTree = generateTreesDFS(start, i - 1);
vector<TreeNode*> *rightSubTree = generateTreesDFS(i + 1, end);
for (int j = 0; j < leftSubTree->size(); ++j) {
for (int k = 0; k < rightSubTree->size(); ++k) {
TreeNode *node = new TreeNode(i);
node->left = (*leftSubTree)[j];
node->right = (*rightSubTree)[k];
subTree->push_back(node);
}
}
}
}
return subTree;
}
};