CountDownLacth 的使用
常用于监听某些初始化操作,等初始化执行完毕,通知主线程继续执行。
先看示例代码:
public class UseCountDownLatch {
public static void main(String[] args) {
final CountDownLatch countDown = new CountDownLatch(2);
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println("进入线程t1" + "等待其他线程处理完成...");
countDown.await();
System.out.println("t1线程继续执行...");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
},"t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println("t2线程进行初始化操作...");
Thread.sleep(3000);
System.out.println("t2线程初始化完毕,通知t1线程继续...");
countDown.countDown();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
Thread t3 = new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println("t3线程进行初始化操作...");
Thread.sleep(4000);
System.out.println("t3线程初始化完毕,通知t1线程继续...");
countDown.countDown();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
t1.start();
t2.start();
t3.start();
}
}
运行结果:
进入线程t1等待其他线程处理完成...
t2线程进行初始化操作...
t3线程进行初始化操作...
t2线程初始化完毕,通知t1线程继续...
t3线程初始化完毕,通知t1线程继续...
t1线程继续执行...
CyclicBarrier
假设有一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个没有准备好,大家一起等待。
示例代码:
public class UseCyclicBarrier {
static class Runner implements Runnable {
private CyclicBarrier barrier;
private String name;
public Runner(CyclicBarrier barrier, String name) {
this.barrier = barrier;
this.name = name;
}
@Override
public void run() {
try {
Thread.sleep(1000 * (new Random()).nextInt(5));
System.out.println(name + " 准备OK.");
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(name + " Go!!");
}
}
public static void main(String[] args) throws IOException, InterruptedException {
CyclicBarrier barrier = new CyclicBarrier(3); // 3
ExecutorService executor = Executors.newFixedThreadPool(3);
executor.submit(new Thread(new Runner(barrier, "zhangsan")));
executor.submit(new Thread(new Runner(barrier, "lisi")));
executor.submit(new Thread(new Runner(barrier, "wangwu")));
executor.shutdown();
}
}
运行结果示例:
lisi 准备OK.
zhangsan 准备OK.
wangwu 准备OK.
wangwu Go!!
lisi Go!!
zhangsan Go!!
Callable 和 Future
Future 模式非常适合在处理很耗时很长的业务逻辑中使用,可以有效地减少系统的响应时间,提高系统的吞吐量。
示例代码:
public class UseFuture implements Callable<String>{
private String para;
public UseFuture(String para){
this.para = para;
}
/**
* 这里是真实的业务逻辑,其执行可能很慢
*/
@Override
public String call() throws Exception {
//模拟执行耗时
Thread.sleep(5000);
String result = this.para + "处理完成";
return result;
}
//主控制函数
public static void main(String[] args) throws Exception {
String queryStr = "query";
//构造FutureTask,并且传入需要真正进行业务逻辑处理的类,该类一定是实现了Callable接口的类
FutureTask<String> future = new FutureTask<String>(new UseFuture(queryStr));
FutureTask<String> future2 = new FutureTask<String>(new UseFuture(queryStr));
//创建一个固定线程的线程池且线程数为1,
ExecutorService executor = Executors.newFixedThreadPool(2);
//这里提交任务future,则开启线程执行RealData的call()方法执行
//submit和execute的区别: 第一点是submit可以传入实现Callable接口的实例对象, 第二点是submit方法有返回值
Future f1 = executor.submit(future); //单独启动一个线程去执行的
Future f2 = executor.submit(future2);
System.out.println("请求完毕");
try {
//这里可以做额外的数据操作,也就是主程序执行其他业务逻辑
System.out.println("处理实际的业务逻辑...");
Thread.sleep(1000);
} catch (Exception e) {
e.printStackTrace();
}
//调用获取数据方法,如果call()方法没有执行完成,则依然会进行等待
System.out.println("数据:" + future.get());
System.out.println("数据:" + future2.get());
executor.shutdown();
}
}
运行结果:
请求完毕
处理实际的业务逻辑...
数据:query处理完成
数据:query处理完成
Semaphore
Semaphore 信号量可以控制系统的流量,拿到信号量的线程可以进入,否则就等待。通过 acquire() 和 release() 获取和释放访问许可。
示例代码:
public class UseSemaphore {
public static void main(String[] args) {
// 线程池
ExecutorService exec = Executors.newCachedThreadPool();
// 只能5个线程同时访问
final Semaphore semp = new Semaphore(5);
// 模拟20个客户端访问
for (int index = 0; index < 20; index++) {
final int NO = index;
Runnable run = new Runnable() {
public void run() {
try {
// 获取许可
semp.acquire();
System.out.println("Accessing: " + NO);
//模拟实际业务逻辑
Thread.sleep((long) (Math.random() * 10000));
// 访问完后,释放
semp.release();
} catch (InterruptedException e) {
}
}
};
exec.execute(run);
}
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
//System.out.println(semp.getQueueLength());
// 退出线程池
exec.shutdown();
}
}
运行结果:
Accessing: 0
Accessing: 4
Accessing: 3
Accessing: 2
Accessing: 1
Accessing: 5
Accessing: 6
Accessing: 7
Accessing: 8
Accessing: 9
Accessing: 10
Accessing: 11
Accessing: 12
Accessing: 13
Accessing: 14
Accessing: 15
Accessing: 16
Accessing: 17
Accessing: 18
Accessing: 19
ReentrantLock
重入锁,在需要进行同步的代码部分加上锁定,但不要忘记最后一定要释放锁定,不然会造成锁永远无法释放,其他线程永远进不来的结果。
示例代码:
public class UseReentrantLock {
private Lock lock = new ReentrantLock();
public void method1(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1..");
Thread.sleep(1000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1..");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void method2(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method2..");
Thread.sleep(2000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method2..");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
final UseReentrantLock ur = new UseReentrantLock();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
ur.method1();
ur.method2();
}
}, "t1");
t1.start();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
//System.out.println(ur.lock.getQueueLength());
}
}
运行结果:
当前线程:t1进入method1..
当前线程:t1退出method1..
当前线程:t1进入method2..
当前线程:t1退出method2..
在使用 synchronized 时,如果需要在多线程间进行协作工作,则需要 Object 类的 wait() 和 notify()、notifyAll() 方法进行配合工作。
同样,在使用 Lock 的时候,可以使用一个新的等待 / 通知的类,它就是 Condition,Condition 一定是针对具体某一把锁的,也就是只有在锁的基础上才会产生 Condition。
示例代码:
public class UseCondition {
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
public void method1(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态..");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁..");
condition.await(); // Object wait
System.out.println("当前线程:" + Thread.currentThread().getName() +"继续执行...");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void method2(){
try {
lock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒..");
condition.signal(); //Object notify
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
final UseCondition uc = new UseCondition();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
uc.method1();
}
}, "t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
uc.method2();
}
}, "t2");
t1.start();
t2.start();
}
}
运行结果:
当前线程:t1进入等待状态..
当前线程:t1释放锁..
当前线程:t2进入..
当前线程:t2发出唤醒..
当前线程:t1继续执行...
可以通过一个 Lock 对象产生多个 Condition 进行多线程间的交互,非常灵活,可以使得部分需要唤醒的线程唤醒,其他线程则继续等待通知。
示例代码:
public class UseManyCondition {
private ReentrantLock lock = new ReentrantLock();
private Condition c1 = lock.newCondition();
private Condition c2 = lock.newCondition();
public void m1(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m1等待..");
c1.await();
System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m1继续..");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m2(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m2等待..");
c1.await();
System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m2继续..");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m3(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "进入方法m3等待..");
c2.await();
System.out.println("当前线程:" +Thread.currentThread().getName() + "方法m3继续..");
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m4(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
c1.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void m5(){
try {
lock.lock();
System.out.println("当前线程:" +Thread.currentThread().getName() + "唤醒..");
c2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) {
final UseManyCondition umc = new UseManyCondition();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
umc.m1();
}
},"t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
umc.m2();
}
},"t2");
Thread t3 = new Thread(new Runnable() {
@Override
public void run() {
umc.m3();
}
},"t3");
Thread t4 = new Thread(new Runnable() {
@Override
public void run() {
umc.m4();
}
},"t4");
Thread t5 = new Thread(new Runnable() {
@Override
public void run() {
umc.m5();
}
},"t5");
t1.start(); // c1
t2.start(); // c1
t3.start(); // c2
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
t4.start(); // c1
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
t5.start(); // c2
}
}
运行结果:
当前线程:t1进入方法m1等待..
当前线程:t2进入方法m2等待..
当前线程:t3进入方法m3等待..
当前线程:t4唤醒..
当前线程:t1方法m1继续..
当前线程:t2方法m2继续..
当前线程:t5唤醒..
当前线程:t3方法m3继续..
ReentrantReadWriteLock
读写锁,其核心就是实现读写分离的锁。在高并发访问下,尤其是读多写少的情况下,性能要远高于重入锁。读读共享,写写互斥,读写互斥。
示例代码:
public class UseReentrantReadWriteLock {
private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
private ReadLock readLock = rwLock.readLock();
private WriteLock writeLock = rwLock.writeLock();
public void read(){
try {
readLock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
} catch (Exception e) {
e.printStackTrace();
} finally {
readLock.unlock();
}
}
public void write(){
try {
writeLock.lock();
System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
Thread.sleep(3000);
System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
} catch (Exception e) {
e.printStackTrace();
} finally {
writeLock.unlock();
}
}
public static void main(String[] args) {
final UseReentrantReadWriteLock urrw = new UseReentrantReadWriteLock();
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
urrw.read();
}
}, "t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
urrw.read();
}
}, "t2");
Thread t3 = new Thread(new Runnable() {
@Override
public void run() {
urrw.write();
}
}, "t3");
Thread t4 = new Thread(new Runnable() {
@Override
public void run() {
urrw.write();
}
}, "t4");
// t1.start();
// t2.start();
// t1.start(); // R
// t3.start(); // W
t3.start();
t4.start();
}
}
运行结果:
当前线程:t3进入...
当前线程:t3退出...
当前线程:t4进入...
当前线程:t4退出...