测序数据量?reads数目?cluster?

首先,需要明确一点: 数据量大小其实就是碱基的个数。

那么,数据量大小的计算方法是:

  1. 单端测序

数据量=reads长度 X reads个数 (reads长度很容易得知,reads个数等于测序所得到的fastq文件的总reads数)

  1. 双端测序

数据量=单端reads长度 X 单端reads个数 X 2

通常测序数据量的单位都是用“G"表示,例如1G。需要强调的是,这里所说的G不是说测序文件在硬盘上的大小为1G,而是表示10亿个碱基。这是如何计算的呢?

首先,我们需要知道1个碱基=1 byte ;

其次是,1kb=10^3 byte 1M=10^6 byte 1G=10^9 byte。

所以,1G的数据量=10^9=10亿个碱基。

此外,测序数据量还有另外一种表示方式,即cluster。一个cluster表示一个DNA片段(对于RNA-seq,则表示一个片段化后的RNA分子)。比如说某一个样本测序数据量为30M 的 cluster。如果采用双端测序技术,每个cluster从两端都测一次,每次测150bp, 所以就会得到30M X 2=60M的reads数,然后reads数乘以每条read的长度就是我们最后的测序数据量(碱基数),即为60M X 150=9G的碱基数。


我们知道了测序数据量是如何计算的,那么问题来了,对于一个测序样本,需要测多少G 的数据量才能满足实验要求呢?要回答这个问题,首先要搞清楚几个概念。

  1. 测序深度(Sequencing depth): 是指测序得到的碱基总量(bp)与基因组大小的比值,即测序深度=数据量大小 / 参考基因组大小。或者理解为基因组中每个碱基被测序到的平均次数。

  2. 测序覆盖度(Sequencing coverage): 是指测序获得的序列占整个基因组的比例。或者可以理解为基因组上至少被检测到1次的区域(或者是碱基),占整个基因组的比例。

由于基因组中的高GC、重复序列等复杂结构的存在,测序最终拼接组装获得的序列往往无 法覆盖有所的区域,这部分没有获得的区域就称为Gap。例如一个细菌基因组测序,覆盖度是98%,那么还有2%的序列区域是没有通过测序获得的。

测序深度与基因组覆盖度之间是一个正相关的关系,测序带来的错误率或假阳性结果会随着测序深度的提升而下降。

测序深度和覆盖度的示意图如下:

我们的期望是基因组上每个碱基至少被测序到3次(对SNP检测来说,一个位点至少要大于3次,才被认为有效)的概率大于0.99。

那么问题来了,多大的测序深度,才能满足基因组中每个碱基被测序到3次的概率大于0.99。

我们假设基因组大小为G, 假定每次测序可从基因组任何位置上随机检测一个碱基。那么对于基因组上某一个固定碱基位置,在一次测序(每测一个碱基为一次测序)中,该位置被命中的概率为P (P=1/G)。由于基因组 DNA 长度长,在一次测序中,每个碱基被检测到的概率很小。当我们的测序量为10G时,即进行10^9次测序过程,每个碱基被检测到的次数会显著增加。我们知道,当某事件出现的概率很小,而试验次数N很大时,该事件符合泊松分布。泊松分布是一种离散型随机变量的分布,它有一个特殊的性质即期望和方差均为λ。泊松分布的概率由参数λ所确定,N次试验中出现 x 次的概率为:


在实际应用中, 对于所观察的稀有事件,我们先利用样本数据计算出平均值并用它来估计 λ。由于测序深度就是每个碱基被检测到的平均次数,因此可以看作成λ。根据这个公式,我们把x看作特定碱基被测到的次数,λ看作基因组的测序深度。在测序深度为10的情况下,根据公式 P(0)=4.5e-05,几乎不太可能测不到。一个碱基至少被测到一次的概率为1-P(0) ≈ 1。一个碱基至少被测到3次的概率为 1-P( 0)-P( 1) - P( 2) = 0.99。

从图1可以看出,10X的测序深度,能够满足基本的实验目的。

因此只要确定了测序深度,测序数据量就很好计算了。
数据量大小=测序深度X基因组大小。

最后总结:数据量大小=测序深度X基因组大小

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------I'm a line ! Thanks! --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考:https://zhuanlan.zhihu.com/p/40040208

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容