Pytorch Multi-GPU原理与实现(单机多卡)

最近训练模型时候想要使用使用多GPU运算来提高计算速度,参考一些博客以及自己的动手实验搞懂了Pytorch的Multi-GPU原理。现在稍微整理一下。

原理

通常情况下,多GPU运算分为单机多卡和多机多卡,两者在pytorch上面的实现并不相同,因为多机时,需要多个机器之间的通信协议等设置。

pytorch实现单机多卡十分容易,其基本原理就是:加入我们一次性读入一个batch的数据, 其大小为[16, 10, 5],我们有四张卡可以使用。那么计算过程遵循以下步骤:

  1. 假设我们有4个GPU可以用,pytorch先把模型同步放到4个GPU中。
  2. 那么首先将数据分为4份,按照次序放置到四个GPU的模型中,每一份大小为[4, 10, 5];
  3. 每个GPU分别进行前项计算过程;
  4. 前向过程计算完后,pytorch再从四个GPU中收集计算后的结果假设[4, 10, 5],然后再按照次序将其拼接起来[16, 10, 5],计算loss。
    整个过程其实就是 同步模型参数→分别前向计算→计算损失→梯度反传

实现

定义模型

import torch
import torch.nn as nn

class Model(nn.Module):
    def __init__(self):
        self.linear = nn.Linear(5, 5)

    def forward(self, inputs):
        output = self.linear(inputs)
        return output

model = Model()

定义优化器

optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)

实现多GPU

# 假设就一个数据
data = torch.rand([16, 10, 5])

# 前向计算要求数据都放进GPU0里面
# device = torch.device('cuda:0')
# data = data.to(device)
data = data.cuda()

# 将网络同步到多个GPU中
model_p = torch.nn.DataParalle(model.cuda(), device_ids=[0, 1,  2, 3])
logits = model_p(inputs)
  
# 接下来计算loss
loss = crit(logits, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

注:模型要求所有的数据和初始网络被放置到GPU0,实际上并不需要,只需要保证数据和初始网路都在你所选择的多个gpu中的第一块上就行。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容

  • 学号:16020120050 姓名:吴言凡 转自:https://www.zhihu.com/question/6...
    离原_ca70阅读 4,111评论 1 2
  • 关于Mongodb的全面总结 MongoDB的内部构造《MongoDB The Definitive Guide》...
    中v中阅读 31,919评论 2 89
  • 今天下了一天的雨,到挺凉爽,就是人家都打着伞,加微信不方便啊,我也不好意思呀。拖到中午了,为不碍事我决定...
    昊昊_0f5e阅读 231评论 0 0
  • 《跃迁》读后感 初次结缘于古典老师是2017年上半年读到一本书《拆掉思维的墙》, 当时我很受启发和激励,古典老师的...
    AnnieShi阅读 529评论 0 3
  • 目标:1、希望孩子拥有更多朋友更加开心快乐!智慧多多!不计较!不抱怨!能够心平气和的说话!不着急!不上火!我俩不干...
    zl向日葵阅读 179评论 0 1