选择排序 --- Java版

思路

原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

[17,3,25,14,20,9].png

代码

因为思路比较简单所以直接写出代码:

public class SelectionSort {

    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int i = 0; i < N; i++) {
            int min = i;              //min初始值都是为第一趟遍历的元素下标
            for (int j = i + 1; j < N; j++)
                if (less(a, j, min)) // 需要更新min的值
                    min = j;
            swap(a, i, min);
        }
    }

    private static boolean less(Comparable[] a, int i, int j) {
        if (a[i].compareTo(a[j]) < 0)
            return true;
        else
            return false;
    }

    private static void swap(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

性能

接下来分析下选择排序的复杂度。每次外层遍历的元素a[i],都会有a[j]会与之比较,并且j是自增到数组最后一个元素, 所以这个算法至少需要(N– 1) + (N– 2) + ... + 1 + 0 = N^2 / 2 次比较,并且每个外层循环i都会有一次swap交换所以至少需要N次交换。

algorithm4_princeton.png

如果数组是['S', 'O', 'R', 'T', 'E', 'X', 'A', 'M', 'P', 'L', 'E']。那么根据上图按照程序执行每一步以后可以发现灰色区域是有序区,黑色是待排无序区。正好发现他们面积各占1/2。这就是该算法N^2 / 2 次比较的物理表现。
  所以选择排序时间复杂度是O(N^2),空间复杂度是O(1)。而且我们还会发现即使原来数组以及排好顺序了调用这个算法依然需要O(N^2)时间复杂度。最好,最坏,平均情况:都为O(n^2),并且还是不稳定排序算法。(稳定性这里不展开了,自己试验下就行了)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 概述排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的...
    Luc_阅读 2,319评论 0 35
  • 排序的基本概念 在计算机程序开发过程中,经常需要一组数据元素(或记录)按某个关键字进行排序,排序完成的序列可用于快...
    Jack921阅读 1,480评论 1 4
  • 概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部...
    蚁前阅读 5,235评论 0 52
  • 我们在收到另一半的“我爱你”信息时,多半都是内心欣喜、开心的吧。最近却有一丈夫在收到其妻子发来的这条信息后,惊慌失...
    子涓_心灵小时光阅读 1,013评论 2 19
  • 今天吃饭,我和我妈说到了三种颜色幼儿园的事情,我妈很吃惊,觉得怎么会有这样的事,怎么会没人发现。我很淡定的说,我小...
    打呼的蕾蕾阅读 253评论 0 0