如何运用数据做出一个爆红的电视节目

Sebastian Wernicke: How to use data to make a hit TV show
如何运用数据做出一个爆红的电视节目

在大数据时代,很多决策,包括很多重要的决策,都是靠数据分析去做的,
用数据分析做决策,主要包括两大部分,

  1. 把问题分解,去分析细节
  2. 把细节合并,得出结论

但是数据分析一般只在第一步是有效的,第二步成功的关键在于人,在于决策者。
这也是为什么Amazon和Netflix同样都要做一个火爆的电视节目,同样都是用大量的数据分析,同样都是科技巨头,但是得到的效果却截然不同,区别就在于通过大量数据分析之后,做出结论的是人,如果这个决策者是个更强的专家,那决策的正确性会更加大一些。


Roy Price is a senior executive with Amazon Studios.
his responsibility to pick the shows, the original content that Amazon is going to make
that's a highly competitive space.
He has to find shows that are really, really great.

So this curve here is the rating distribution of about 2,500 TV shows on the website IMDB, and the rating goes from one to 10, and the height here shows you how many shows get that rating.
if your show gets a rating of nine points or higher, that's a winner. Then you have a top two percent show.
So in other words, he has to find shows that are on the very right end of this curve here.

"Breaking Bad," "Game of Thrones," "The Wire,"“绝命毒师”、 “权力的游戏”、“火线重案组”

Roy Price does not want to take any chances. He wants to engineer success. He needs a guaranteed success,
Roy Price不想只是碰运气。 他想要打造成功。 他要一个万无一失的成功

he takes a bunch of ideas for TV shows, and from those ideas, through an evaluation, they select eight candidates for TV shows,
Amazon is giving out free stuff,
They record when somebody presses play, when somebody presses pause, what parts they skip, what parts they watch again. So they collect millions of data points,
they want to have those data points to then decide which show they should make.

do all the data crunching, and an answer emerges 处理过后得到了一个答案
"Alpha House." lands at 7.5,

Meanwhile,
Ted Sarandos, who is the Chief Content Officer of Netflix,
instead of holding a competition, what he did -- and his team of course -- was they looked at all the data they already had about Netflix viewers, you know, the ratings they give their shows, the viewing histories, what shows people like, and so on.

they use that data to discover all of these little bits and pieces about the audience: what kinds of shows they like, what kind of producers, what kind of actors.

took a leap of faith,信心满满地

not a sitcom about four Senators but a drama series about a single Senator. 不是四个参议员的喜剧, 而是一系列有关一位 单身参议员的电视剧

House of Cards,“纸牌屋” gets a 9.1 rating on this curve,

logic kind of tells you that this should be working all the time.

despite having lots of data, does not always produce optimum results.

the pinnacle of scientific success:达到了一个科学界的顶峰
It worked beautifully for year after year after year, until one year it failed.

even the most data-savvy companies, Amazon and Google, they sometimes get it wrong.
into the workplace, law enforcement, medicine.进入工作场所、 执法过程、 医药领域。

the difference between successful decision-making with data and unsuccessful decision-making,

So whenever you're solving a complex problem, you're doing essentially two things.
taking apart and putting back together again.
The first one is, you take that problem apart into its bits and pieces so that you can deeply analyze those bits and pieces, and then of course you do the second part. You put all of these bits and pieces back together again to come to your conclusion.
首先,你会把问题拆分得非常细, 这样你就可以深度地分析这些细节, 当然你要做的第二件事就是, 再把这些细节重新整合在一起, 来得出你要的结论。

now the crucial thing is that data and data analysis is only good for the first part.
Data and data analysis, no matter how powerful, can only help you taking a problem apart and understanding its pieces. It's not suited to put those pieces back together again and then to come to a conclusion.
There's another tool that can do that, and we all have it, and that tool is the brain.

Ted Sarandos and his team made that decision to license that show, "House of Cards,"

I believe it's still on us to make the decisions if we want to achieve something extraordinary,
still pays off ,会有很大的收获

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容