二重积分

一元函数的积分可以表示为平面图形的面积
二元函数的二重积分可以表示为空间曲面图形的体积;

一,概念

<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-1.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-2.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-3.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-4.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-5.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-6.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-7.png" width="500" />

二,二重积分的计算

  • 直角坐标系下计算,对谁积分谁就是变量,其余的都看为常数,如果即是上线结构又是左右结构就看被积函数关于x的表达式和关于y的表达式,哪一个简单就先对谁积分;

<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-8.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-9.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-10.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-11.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-12.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-13.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-14.png" width="500" />
<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-15.png" width="500" />

  • 极坐标系下计算( 在积分区域D为圆,半圆,圆环,扇形或被积函数为f(x2+y2)的形式利用极坐标计算二重积分)
    <img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-16.png" width="500" />
    <img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-17.png" width="500" />
    <img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-18.png" width="500" />
    <img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-19.png" width="500" />
    <img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-20.png" width="500" />
    <img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-21.png" width="500" />

二,二重积分的应用

计算曲面图形的体积

<img src="https://raw.githubusercontent.com/liangxifeng833/my_program/master/images/math/mult_weifen/two-jifen-22.png" width="500" />

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容