获取中间层的输出

ref

  1. 要获取中间层的输出,最好的办法是新建一个模型
from keras.models import Model
model = ...  #原始model
layer_name = "my_layer"
intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)


####or
    base_model = load_model(model_path)
    base_model.layers.pop()
    pre = Dense(units=num_label,activation='softmax')(base_model.layers[-1].output)
    model = Model(base_model.input,pre)
  1. 或者使用keras function来实现返回一个特定的输出
from keras import backend as K
get_3rd_layer_output = K.function([model.layers[0].input, model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
  1. 固定特定层权重freeze weights
base_model = InceptionV3(weights='imagenet', include_top=False) 
for layer in base_model.layers:  
    layer.trainable = False

或者比如指定前3层不训练

for layer in base_model.layers[:3]:  
   layer.trainable = False
  1. 使用pop方法来删除最后一层
model = Sequential()
model.add(Dense(32, activation="relu", input_dim=784))
model.add(Dense(32, activation="relu"))
print(len(model.layers)) #输出2
model.pop()
print(len(model.layers))  #输出1
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容

  • Keras 源码分析 此文档中,凡代码里用pass,均系省略源码以便阅读,起“本枝百世”之用。此注明者,乃pass...
    yangminz阅读 31,787评论 5 34
  • //Clojure入门教程: Clojure – Functional Programming for the J...
    葡萄喃喃呓语阅读 3,658评论 0 7
  • 从这篇开始介绍Keras的Layers,就是构成网络的每一层。Keras实现了很多层,包括核心层、卷基层、RNN网...
    readilen阅读 2,116评论 1 3
  • 女士品茶是一本统计学入门读物。它描述了统计学研究的历史,统计学思想和方法如何进入科学工作思想。统计学思想如何改变人...
    JJ2222阅读 1,235评论 0 0
  • 进入高中,老师要求每个人都定下自己的高考目标。我不知道自己想要的到底是什么,我只是隐隐约约地知道我想当涉外律师,只...
    红yu白阅读 715评论 3 1