人工智能、机器学习、深度学习概念解读

1、人工智能

人工智能是制造智能机器、可学习计算程序和需要人类智慧解决问题的科学和工程。经典地,这些包括自然语言处理和翻译,视觉感知,模式识别,决策制定等,但应用的数量和复杂性在快速增长。

2、机器学习

机器学习是从案例和经验(例如数据配置)中习得的算法,而不是依赖于硬件代码和事先定义的规则。换句话说,不是一个开发者告诉程序如何区分苹果和橘子,而是算法本身通过喂养数据(训练),自己学会如何区分苹果和橘子。

监督学习vs无监督学习

监督和非监督学习是机器学习的两种类型。

  • 在监督学习中,系统给出一系列“正确答案”的例子。基于这些例子,系统将从正确的答案中学习什么是对的,从而进行正确预测的输出。监督学习的现实应用包括垃圾邮件的检查(例如,系统可能有一组标记为“垃圾邮件”并且学习正常识别垃圾邮件的电子邮件)和手写识别。

  • 在无监督学习中,系统没有给出正确的答案,而是提供需要自己去发现特征的未标记示例。一个示例将基于大量客户数据中发现的,包括可以将客户分组的某些特征(例如,购买频率)。

什么是一类类型的机器学习

  • 分类:将电子邮件归类为垃圾邮件,识别欺诈,面部识别,语音识别等;
  • 聚类:对比图像,文本和语音找到相似的项目,识别异常行为的集群;
  • 预测:基于网络活动和其他元数据预测客户或员工流失的可能性,基于可穿戴数据预测健康问题。

3、深度学习

深度学习的主要发展是现有人工智能拐点的驱动力量之一。深度学习是机器学习的分集。大多数传统机器学习方法和特点(例如,可能预测的输入和属性)由人来设计。特征工程是一个瓶颈,需要有意义的特定技术。在无人管理的深度学习中,重要特征不是由人类来定义,而是由算法学习和创建。

深度学习是一种需要训练大型神经网络的“深层”层次结构,且每层可以解决问题不同方面的机器学习,从而使系统能解决更复杂问题。

以火车识别为例,深度学习系统包括了识别火车的不同特征的各个层。例如,底层将识别是否具有窗户。如果答案是肯定的,下一层将寻找是否有轮子,接下来将会识别是否是长方形的车等等。直到这些层共同地将图片识别为火车或彻底否定。随着技术发展,可以支持大型神经网络的训练,深度学习作为增强机器学习能力的方法已经越来越普遍。

4、 什么是通用、强大或真实的人工智能?

通用、强大或真实人工智能是,机器智能算法完全复制人类智慧,包括人类的独立学习和决策能力。虽然像全脑模拟这样的技术被用于实现通用AI的目标,但是其所需的计算能力数量仍然远远超出了当前的技术,使得通用的人工智能基本指存在于理论层面。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容