第一篇 算法与时间复杂度

算法的几个例子

算法的简单定义:将一定的输入转化为输出的过程

几个简单的例子了解哪些内容都是算法:

  • 在Excel表格中,需要针对某一列按照从小到大排序。——排序算法
  • 在地图的日常使用中,需要查找一条到达目的地的最短路径。——单源最短路算法
  • 将一对新闻的标题放到库中,针对其建立一个搜索引擎。——分词算法+倒排索引+排序算法

数学归纳法与递推

数学归纳法的基本思想是:

  • 在 n=1 时命题成立
  • 证明如果在 n=m 时命题成立,那么 n=m+1 时命题成立

这里不是要复习高中数学,而是要沿用其中的思想到递推中,考虑下面的算法问题:

小赖的爱好是花式爬楼梯,每次他可以爬1-3阶台阶,他数了一下,一层楼的楼梯有12阶,那么他爬到12阶的时候,一共有多少种爬楼梯的方式呢?

上面这个算法问题就需要用到递推的思想,假设 n 代表了第几阶楼梯,S(n) 代表在这阶楼梯上有几种爬法,那么我们可以得到下面的结论:

  • 当 n=0 时,只有一种爬法(因为已经在这里了)
  • 当 n=k 时,S(n)=S(n-1)+S(n-2)+S(n-3),该等式中当 n<0 时,S(n)=0,因为没有办法爬到0阶台阶以下

通过上面的方法就可以直接计算出第12阶台阶上一共有多少种爬法,利用了和数学归纳法一样的思想,这也是计算机算法的一种基础思想。

递归与分治

还是上面关于小赖爬楼梯的问题,如果将思考的顺序倒过来,就变成了另一个实现算法的基础思想:

  • 假设我编写了一个函数 stepWays(n) 返回 S(n),并且该函数一定能返回正确结果,那么有 stepWays(n)=stepWays(n-1)+stepWays(n-2)+stepWays(n-3)
  • 当然,如果没有写任何其他条件那么程序将永远不停的运行下去,于是添加两个条件:stepWays(0)=1 以及 stepWays(n<0)=0,这样程序就可以得出正确的答案

乍一看这种方式和递推一样,但是其实思想和递推有很多不同,递归使用如下方式:

  • 确定递归函数
  • 确定问题边界

而分治策略则时长和递归紧密结合在一起,它的思考方式和递归非常相似,在我们拿到一个巨大的问题难以解决的时候,分治策略通过如下方式解决:

  • 将大问题分解成几个子问题
  • 确定最小单元子问题的解决方案

考虑下面的算法问题:

小鑫河最近迷上了玩汉诺塔,可是小学还没毕业的他玩起来有点难度,汉诺塔的基本规则是:有三根杆子 A,B,C。A 杆上有 N(N>1) 个穿孔圆盘,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至 C 杆:每次只能移动一个圆盘;大盘不能叠在小盘上面。你可以帮他解决这个问题吗?

对于汉诺塔的经典问题,在N很大的时候我们并不能一次性解决这个问题,利用递归和分治的思想我们可以这样解决:

  • 为了将圆盘全部移动到 C,我们需要首先将 N-1 个圆盘移动到 B,然后将最底下最大的圆盘移动到 C,然后再将 N-1 个圆盘移动到 C
  • 当 N=1 时,我们直接将圆盘移动到 C 就可以了

上面的话可能不是特别好理解,但是网络上对于汉诺塔经典问题的解有好多,大家可以去搜索一下就可以看到。

时间复杂度

时间复杂度是衡量算法的好坏的尺度,如果不知道时间复杂度,那么就意味着没有办法对设计的算法进行评价,而如果对时间复杂度的概念都不清楚,那么就可以基本认定不懂算法了。

时间复杂度的简单定义:时间复杂度是一个描述算法运行时间的函数

关于时间复杂度有两个概念的意义,一是了解,二是进行计算,在进行计算之后,可能需要针对问题的参考范围进行特定的优化。

还是利用上面关于小赖爬楼梯的例子:

  • 针对递推的方案,假设计算一次需要 O(1) 的时间,那么从 n=0 开始,直到 n=i 的时候,我们一共需要计算 i 次,因此整体的复杂度就是 O(n);
  • 如果放在递归上,那么时间复杂度可能就大不相同,针对 n=i 的情况,我们需要计算 n=i-1,n=i-2,n=i-3,在计算 n=i-1 的时候,我们又需要计算 n=i-2,n=i-3,n=i-4的情况,因此我们需要计算的次数为:1+3+9+...+3^{n-1}, 对这个等比数列求和我们可以得到总共需要计算的次数:(3^n-1)/2,那么整体的时间复杂度就是 O((3^n-1)/2)

而当 n 越来越大的时候,在复杂度关于 n 的多项式中,仅有 n 的最高次项增长最快,所以我们一般会以 n 的最高次项来描述一个算法的复杂度,所以刚刚的结论就是,递推的复杂度为 O(n),而递归的复杂度为 O(3^n)

最后留个思考题:

  • 为什么递推和递归的算法看起来是一样的,可是递归的时间复杂度高出那么多?如果想要改进该如果改进?
  • 尝试着计算一下小鑫河汉诺塔问题的时间复杂度

转载请注明来自于 贺云飞的简书

这个系列的博客可以作为《算法导论》的简单概要,或者说重点介绍,希望给正在学算法的同学一点参考,顺带感谢一下赖赖给我的动力,这里是传送门:Spring step by step

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容