单目相机标定___一、原理



相机标定目的:
获取摄像机的内参和外参矩阵,同时也会得到每一副标定图像的旋转和平移矩阵。 内参和外参可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像。

原理:
成像模型的坐标系为:世界坐标系 --> 相机坐标系 --> 图像坐标系 --> 像素坐标系

先说从相机坐标系到图像坐标系的变换:
从针孔成像模型说起:




————————————————————————————
相机坐标系中实际的点坐标为Q(X, Y, Z)
对应的图像(坐标系)平面上的点为 q(x, y , f)

理想情况如上所示,但实际上成像芯片的中心通常不在光轴上。




原本的焦距是f,这里把f拆成2个不同的焦距,一个是x轴的焦距,一个是y轴的焦距



因此最终计算的结果为:

将实际中的点Q(X, Y, Z)映射到投影平面上坐标为 (x , y)的点的过程称为投影变换。

这种变换可以使用齐次坐标。




给q(x, y)增加了一个维度w,即为q(x, y, w)




下图所示,网上一些资料中也有这种形式:
x0、y0为在图像平面上的主点坐标,是Cx,Cy的另一种形式,
其中s为坐标轴倾斜参数,理想情况下为0,其他参数都是一样的。


—————————————————————————————————
我们已经得到了内参矩阵,能够从相机坐标系转换到图像坐标系上,
接下来说如何得到外参矩阵,将其从世界坐标系转换到相机坐标系上

从世界坐标系转换到相机坐标系上属于刚体变换,即不会发生形变,也就是说只有旋转平移

公式符号说明:
带有下标 w 的是世界坐标系
带有下标 c 的是相机坐标系

设旋转矩阵为 R, 平移矩阵为 T

再把偏移矩阵T加上即可,
偏移矩阵T为 [Tx, Ty, Tz]的转置,是X、Y、Z方向上的平移。



将旋转矩阵R和偏移矩阵T合起来即得外参矩阵即为:



——————————————————————————————————
图像坐标系和像素坐标系之间的转换:
像素坐标系和图像坐标系都在成像平面上,只是各自的原点和度量单位不一样。
图像坐标系的原点为相机光轴与成像平面的交点,通常情况下是成像平面的中点或者叫principal point。图像坐标系的单位为mm,属于物理单位,
而像素坐标系的单位是pixel,我们平常描述一个像素点都是几行几列。所以
这两者之间的转换如下:其中dx和dy表示每一列和每一行分别代表多少mm,即1pixel = dx mm
点(u,v)为像素坐标系上的点,对应的图像坐标系上的点为(x,y)


——————————————————————————————————————
有了一系列参数后就能推导整个公式了。(这里借用一下别人的图)

相机的内参和外参可以通过张正友标定获取。通过最终的转换关系来看,
一个三维世界中的坐标点,可以在图像中找到一个对应的像素点,

在知道摄像机高度的情况下,单目相机能够测距
/*
以下为曾经的错误观点
但是反过来,通过图像中的一个点找到它在三维中对应的点就很困难,因为我们并不知道等式左边的Zc值。这个Zc可近似看做相机坐标系中相机到物体的距离。

在我看来,二维图像中的一个点,对应在三维空间中是一条线,因此如果不知道相机剧被测物体距离,是无法从二维图像上的点推导出三维空间中某个点的坐标的。
*/
————————————————————————————————
透镜畸变
(写了这么多,写不动了,透镜畸变原理可以在《学习OpenCV》第11章找到相关内容,挺详细的)



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容

  • 前言 最近翻阅关于从2D视频或者图片中重构3D姿态的文章及其源码,发现都有关于摄像机参数的求解,查找了相关资料,做...
    予汐阅读 6,194评论 0 3
  • 内参矩阵:A外参矩阵:[R/T]畸变系数:[k1,k2,k3,,p1,p2,] 1、相机参数   内参矩阵:一个像...
    iceyer阅读 1,981评论 0 0
  • 今天看到这张图,标题为:友情和爱情的区别~ 突然想到夹心硬糖式的爱情, 坚硬友谊外壳包裹下的甜蜜, 是不是爱情最理...
    LookingforMiffy阅读 359评论 0 0
  • 今天我看到一家有着重庆标注的小店,我走进去吃东西,在我吃的过程中我听见了老板打电话时说的是我的家乡话,也就是重庆...
    半梦鸢尾阅读 402评论 0 3