一,k-means均值聚类法:
它和KNN都具有计算简洁的优点,他们同样受聚类个数和初始分布的影响。它的思想是以随机选取的K个样本作为簇的起始中心点或簇的平均值,各个簇中心点的距离,将该对象赋给最近的簇,再计算每个簇的平均值,然后不断重复,直至所有样本所属类为中心。该算法的缺点是易受异常值的干扰。
一,k-means均值聚类法:
它和KNN都具有计算简洁的优点,他们同样受聚类个数和初始分布的影响。它的思想是以随机选取的K个样本作为簇的起始中心点或簇的平均值,各个簇中心点的距离,将该对象赋给最近的簇,再计算每个簇的平均值,然后不断重复,直至所有样本所属类为中心。该算法的缺点是易受异常值的干扰。