[剑指offer题解][Java]最小的k个数

image

前言

众所周知,《剑指offer》是一本“好书”。

为什么这么说?

因为在面试老鸟眼里,它里面罗列的算法题在面试中出现的频率是非常非常高的。

有多高,以我目前不多的面试来看,在所有遇到的面试算法题中,出现原题的概率大概能有6成,如果把基于原题的变种题目算上,那么这个出现概率能到达9成,10题中9题见过。

如果你是个算法菜鸡(和我一样),那么最推荐的是先把剑指offer的题目搞明白。

至于为什么给“好书”这两个字打引号,因为这本书成了面试官的必备,如果考生不会这本书上的题目,就很可能得到面试官负面的评价。这本书快要成为评判学生算法能力的唯一标准,这使得考前突击变成了一个惯例,反而让投机倒把成了必要,并不一定能真正的考察考生的算法能力。

对于剑指offer题解这个系列,我的写文章思路是,对于看了文章的读者,能够:

  • 迅速了解该题常见解答思路(奇技淫巧不包括在内,节省大家时间,实在有研究需求的人可以查阅其它资料)
  • 思路尽量贴近原书(例如书中提到的面试官经常会要求不改变原数组,或者有空间限制等,尽量体现在代码中,保证读者可以不漏掉书中细节)
  • 尽量精简话语,避免冗长解释
  • 给出代码可运行,注释齐全,对细节进行解释

题目介绍

输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。

本体分类:优化时间和空间效率

解题思路

初始思路:直接排序 O(nlogn)

直接对数组排序,排序后前k个数就是答案,排序一般较快的是O(nlogn),显然这并不是时间复杂度最优解。

方法一:基于快速排序的变种 O(n)

思路

该方法需要改变原数组。

还记得上一题:数组中超过一半的数字么?这一题的思路和上题类似,仅仅是换成了

这种算法是受快速排序算法的启发。

在随机快速排序算法中,我们先数组中随机选择一个数字,然后调整数组中数字的顺序,使得比选中的数字小的数字都排在它的左边,比选中的数字大的数字都排在它的右边。如果这个选中的数字的下标刚好是k,我们就得到了k个小的数字,这些数字在k的左边,并且没有经过排序,但是都比k小。

如果它的下标大于k,我们可以接着在它的左边部分的数组中查找。

如果它的下标小于k,那么中位数应该位于它的右边,我们可以接着在它的右边部分的数组中查找。

这是一个典型的递归过程

详细细节见代码注释。

代码

import java.util.ArrayList;
public class Solution {
    public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
        // 由于本题需要返回ArrayList<Integer>,所以新建之
        ArrayList<Integer> list = new ArrayList<>();
        // 若输入数组长度小于k。直接返回数空的ArrayList
        if(input.length < k){
            return list;
        }

        findKMin(input,0,input.length-1,k);
        for(int i = 0; i < k; i++){
            list.add(input[i]);
        }
        return list;
    }

    private void findKMin(int[] a, int start, int end, int k){
        if(start < end){
            int pos = partition(a, start, end);
            if(pos == k-1){
                return ;
            }else if(pos < k-1){
                findKMin(a,pos+1,end,k);
            }else{
                findKMin(a,start,pos-1,k);
            }
        }
    }

    // 快排中的每次排序实现(挖坑填数法),返回的是交换后start位置(快排一次后的中轴点,中轴点左边全是小于它的,右边都是大于它的)
    public int partition(int[] a, int start, int end){
        int pivot = a[start];
        while(start < end){
            while(start < end && a[end] >= pivot){end--;};
            a[start] = a[end];
            while(start < end && a[start] <= pivot){start++;};
            a[end] = a[start];
        }
        a[start] = pivot;
        return start;
    }
}

方法二:适合海量数据的最大堆 O(nlogk)

思路

该方法不改变原数组,但时间复杂度比O(n)略微复杂了些。

构造一个最大堆,最大堆的性质就是堆顶是所有堆中数字的最大值,那么放入k个数字,随后将数字中k个数字之后的数字依次和堆中的最大数字比较(也就是和堆顶数字比较),如果小于他,就把堆顶数字弹出,放入小的数字,这样遍历一边数组后,得到一个k个数字的最大堆,这个最大堆里存的是最小的k个数。

最大堆的性质由Java中的优先队列,通过自然数的逆序顺序进行维护,也就是下面这句构造:

Queue<Integer> queue = new PriorityQueue<>(k, Collections.reverseOrder());

有的小伙伴会问,为啥最大堆是最小的k个数?

答:说明你对堆还不够了解,恶补一下堆的性质吧~

代码

import java.util.ArrayList;
public class Solution {
    public ArrayList<Integer> GetLeastNumbers_Solution_2(int [] input, int k) {
        // 由于本题需要返回ArrayList<Integer>,所以新建之
        ArrayList<Integer> res = new ArrayList<>();
        // 几种特殊情况
        if (k > input.length|| k == 0) {
            return res;
        }
        // 构造优先队列,排序方法是自然数顺序的逆序,所以是个最大堆,这样这个堆的堆顶就是所有数中的最大数
        Queue<Integer> queue = new PriorityQueue<>(k, Collections.reverseOrder());

        for (int i = 0; i < input.length; i++) {
            // 最大堆内数字个数少于k,一直添加到k个
            if (queue.size() < k) {
                queue.add(input[i]);
            }
            else {
                // 若堆内最大的数字大于数组中的数字,则将数字出堆,并放入这个小的数
                if (input[i] < queue.peek()) {
                    queue.remove();
                    queue.add(input[i]);
                }
            }
        }

        // 结束上面循环后,堆内就是最小的k个数
        while (!queue.isEmpty()) {
            res.add(queue.remove());
        }
        return res;
    }


    public static void main(String[] args) {
        int[] a = {4,5,1,6,2,7,3,8};
        Solution_40 solution_40 = new Solution_40();
        System.out.println(solution_40.GetLeastNumbers_Solution(a,4));
    }
}

总结

书中提到,第二种堆的方法适合海量数据求k个最小。因为k个数的堆,空间是固定的,当数组超级大,那么全存入内存都变得不可行的时候,就需要从外存中慢慢读取数字,然后和这个堆进行比较。

而方法一就必须吧整个数组放入内存中,才能运行,所以不适合海量数据。

关注我

我目前是一名后端开发工程师。技术领域主要关注后端开发,数据爬虫,数据安全,5G,物联网等方向。

微信:yangzd1102

Github:@qqxx6661

个人博客:

原创博客主要内容

  • Java知识点复习全手册
  • Leetcode算法题解析
  • 剑指offer算法题解析
  • SpringCloud菜鸟入门实战系列
  • SpringBoot菜鸟入门实战系列
  • Python爬虫相关技术文章
  • 后端开发相关技术文章

个人公众号:Rude3Knife

个人公众号:Rude3Knife

如果文章对你有帮助,不妨收藏起来并转发给您的朋友们~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容