参考博文
!!!!!!!https://zhuanlan.zhihu.com/p/133226223 感谢博主,主要靠这位解决了问题
https://blog.csdn.net/qq_28491207/article/details/85328823
背景
因为业务需求,想看一下MODIS海洋水色数据的情况,这里数据很特殊。下载到的数据后缀名为‘.nc,按理说应该是NetCDF格式的文件,然而在用户手册中提到文件格式为HDF5,但在ArcGIS中可以NetCDF格式直接打开,又可以HDF5格式在Python中操作
问题:
1、envi打开数据无法显示其正确坐标
2、panoply不知都怎么按照经纬度进行可视化
3、mrt打开文件不显示参数
4、HEG打开文件显示不出其参数
5、利用gdal直接转换有问题
解决
参考知乎作者利用代买实现数据读取与放射变换,利用arcgis对转换的Tiff进行投影定义,输出图像,即可得到可视化结果
代码
from osgeo import gdal,osr
import numpy as np
import os
import sys
from scipy.optimize import leastsq
os.environ['PROJ_LIB'] = os.path.dirname(sys.argv[0])
#from scipy import optimize
#from scipy.optimize import leastsq
#scipy.optimize.leastsq
#import scipy.optimize as opt
# 数组保存为tif
def array2raster(TifName, GeoTransform, array):
cols = array.shape[1] # 矩阵列数
rows = array.shape[0] # 矩阵行数
driver = gdal.GetDriverByName('GTiff')
outRaster = driver.Create(TifName, cols, rows, 1, gdal.GDT_Float32)
# 括号中两个0表示起始像元的行列号从(0,0)开始
outRaster.SetGeoTransform(tuple(GeoTransform))
# 获取数据集第一个波段,是从1开始,不是从0开始
outband = outRaster.GetRasterBand(1)
outband.WriteArray(array)
outRasterSRS = osr.SpatialReference()
# 代码4326表示WGS84坐标
#outRasterSRS.ImportFromEPSG(4326)
outRasterSRS.SetWellKnownGeogCS('WGS84')
outRaster.SetProjection(outRasterSRS.ExportToWkt())
outband.FlushCache()
# hdf批量转tif
def hdf2tif_batch(hdfFolder):
# 获取文件夹内的文件名
hdfNameList = os.listdir(hdfFolder)
for i in range(len(hdfNameList)):
# 判断当前文件是否为HDF文件
if(os.path.splitext(hdfNameList[i])[1] == ".nc"):
hdfPath = hdfFolder+"/"+hdfNameList[i]
# gdal打开hdf数据集
datasets = gdal.Open(hdfPath)
# 获取hdf中的元数据
Metadata = datasets.GetMetadata()
# 获取元数据的个数
#MetadataNum = len(Metadata)
# 输出各子数据集的信息
#print("元数据一共有{0}个: ".format(MetadataNum))
#for key,value in Metadata.items():
# print('{key}:{value}'.format(key = key, value = value))
Latitudes=datasets.GetMetadataItem("/navigation_data/NC_GLOBAL#GRINGPOINTLATITUDE","")
Longitude=datasets.GetMetadataItem("/navigation_data/NC_GLOBAL#GRINGPOINTLONGITUDE","")
# 获取四个角的维度
#Latitudes = Metadata["GRINGPOINTLATITUDE.1"]
# 采用", "进行分割
LatitudesList1 = Latitudes.split("{")
LatitudesList2 = LatitudesList1[1].split("}")
LatitudesList = LatitudesList2[0].split(",")
# 获取四个角的经度
#Longitude = Metadata["GRINGPOINTLONGITUDE.1"]
# 采用", "进行分割
LongitudeList1 = Longitude.split("{")
LongitudeList2 = LongitudeList1[1].split("}")
LongitudeList = LongitudeList2[0].split(",")
# 图像四个角的地理坐标
GeoCoordinates = np.zeros((4, 2), dtype = "float32")
GeoCoordinates[0] = np.array([float(LongitudeList[0]),float(LatitudesList[0])])
GeoCoordinates[1] = np.array([float(LongitudeList[1]),float(LatitudesList[1])])
GeoCoordinates[2] = np.array([float(LongitudeList[2]),float(LatitudesList[2])])
GeoCoordinates[3] = np.array([float(LongitudeList[3]),float(LatitudesList[3])])
# 获取数据时间
#date = Metadata["RANGEBEGINNINGDATE"]
# 第一个子数据集合,也就是NDVI数据
DatasetNDVI = datasets.GetSubDatasets()[8][0]
RasterNDVI = gdal.Open(DatasetNDVI)
NDVI = RasterNDVI.ReadAsArray()
Columns = NDVI.shape[1] # 矩阵列数
Rows = NDVI.shape[0] # 矩阵行数
# 列数
#Columns = float(Metadata["DATACOLUMNS"])
# 行数
#Rows = float(Metadata["DATAROWS"])
# 图像四个角的图像坐标
PixelCoordinates = np.array([[0, 0],
[Columns - 1, 0],
[Columns - 1, Rows - 1],
[0, Rows - 1]], dtype = "float32")
# 计算仿射变换矩阵
def func(i):
Transform0, Transform1, Transform2, Transform3, Transform4, Transform5 = i[0], i[1], i[2], i[3], i[4], i[5]
return [Transform0 + PixelCoordinates[0][0] * Transform1 + PixelCoordinates[0][1] * Transform2 - GeoCoordinates[0][0],
Transform3 + PixelCoordinates[0][0] * Transform4 + PixelCoordinates[0][1] * Transform5 - GeoCoordinates[0][1],
Transform0 + PixelCoordinates[1][0] * Transform1 + PixelCoordinates[1][1] * Transform2 - GeoCoordinates[1][0],
Transform3 + PixelCoordinates[1][0] * Transform4 + PixelCoordinates[1][1] * Transform5 - GeoCoordinates[1][1],
Transform0 + PixelCoordinates[2][0] * Transform1 + PixelCoordinates[2][1] * Transform2 - GeoCoordinates[2][0],
Transform3 + PixelCoordinates[2][0] * Transform4 + PixelCoordinates[2][1] * Transform5 - GeoCoordinates[2][1],
Transform0 + PixelCoordinates[3][0] * Transform1 + PixelCoordinates[3][1] * Transform2 - GeoCoordinates[3][0],
Transform3 + PixelCoordinates[3][0] * Transform4 + PixelCoordinates[3][1] * Transform5 - GeoCoordinates[3][1]]
# 最小二乘法求解
GeoTransform = leastsq(func,np.asarray((1,1,1,1,1,1)))
print(GeoTransform)
TifName = "ee .tif"
array2raster(TifName, GeoTransform[0], NDVI)
print(TifName,"Saved successfully!")
hdf2tif_batch(r"E:/test/ori")