AISHELL2脚本参数和生成文件详解(二)

local/run_gmm.sh

config

  1. nj
  2. stage
  3. gmm-stage

steps/make_mfcc.sh(原脚本是steps/make_mfcc_pitch.sh)

steps/make_fbank.sh(for NN)

config

  1. cmd
    本地运行还是集群
  2. nj =
  3. fbank_config = conf/fbank.conf
    详情见config文件夹(不同的特征提取方式)
    decode.conf fbank.conf mfcc.conf mfcc_hires.conf online_cmvn.conf pitch.conf
  4. compress = true
  5. write_utt2num_frames

data
data/train/fbank & data/test/fbank

  1. data/train/fbank/feats.scp


    feats.jpg
  2. data/train/fbank/data
    mfcc_data.png

    注:可以看出此文件夹下保存了提取的mfcc。文件是二进制存储格式,可以通过命令查看。
copy-feats ark:raw_mfcc_train.1.ark ark,t:-|head
#结果#
IC0001W0001  [
  51.76422 -24.05947 -11.48542 -14.22171 -21.51131 -6.91844 -15.25735 -9.790284 -12.12508 -6.046162 -5.837749 -9.237104 -3.578245 
  51.71874 -23.59971 -12.43908 -13.2603 -13.77947 -4.04338 -2.339039 -14.1908 -15.68014 -11.11484 -10.56573 -9.136873 -8.903507 
  50.39989 -26.81806 -13.96724 -12.90075 -24.01279 -9.993114 -10.71967 -13.26709 -5.000686 2.416336 -16.94094 -13.0459 -2.325243 
  53.2889 -27.27782 -12.49868 -9.125443 -17.64539 -7.357679 -6.063762 -13.38255 1.314548 3.979588 0.6427386 -13.24636 -2.847327 
  52.21899 -24.979 -9.041672 -4.541141 -14.46169 2.665242 -9.788485 -3.725712 -11.20764 -11.11484 -15.4339 -11.64266 -10.15651 
  52.53733 -24.05947 -9.399294 -8.136672 -14.23429 -0.6890687 -18.41158 -15.46091 -14.76271 -17.10232 -9.360557 -9.437568 -9.530009 
  51.80969 -24.979 -13.21392 -3.282705 -13.77947 -5.161484 -16.83447 -7.908175 -8.158304 -14.07384 -12.04902 -8.936411 2.496104 
  51.49135 -25.89853 -10.53176 -6.428794 -11.60923 -1.807173 -8.54691 -9.581161 -13.1572 -7.403842 -5.837749 -6.129932 -5.875418 
  52.08256 -23.13995 -6.419115 -2.293934 -17.19058 -11.16442 -13.8236 -12.92069 -26.73129 -19.22225 -6.486687 -7.833866 -13.8111 

steps/compute_cmvn_stats.sh

utils/fix_data_dir.sh

steps/train_mono.sh

config

  1. nj=4
  2. cmd=run.pl
  3. scale_opts="--transition-scale=1.0 --acoustic-scale=0.1 --self-loop-scale=0.1"
  4. num_iters=40 # 迭代次数
  5. max_iter_inc=30 # 迭代30次后不增加高斯数
  6. totgauss=1000 # 目标高斯数
  7. careful=false
  8. boost_silence=1.0 # Factor by which to boost silence likelihoods in alignment
  9. realign_iters="1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 23 26 29 32 35 38"; #迭代到n次进行re-ali
  10. config= # name of config file.
  11. stage=-4
  12. power=0.25 # exponent to determine number of gaussians from occurrence counts
  13. norm_vars=false # deprecated, prefer --cmvn-opts "--norm-vars=false"
  14. cmvn_opts= # can be used to add extra options to cmvn.
  15. delta_opts= # can be used to add extra options to add-deltas
  • 注:
steps/train_mono.sh --cmd "$train_cmd" --stage 38 --nj $nj \
  data_new/train data/lang exp_new/mono || exit 1;

脚本名字后如果跟着参数设置,会覆盖脚本里的参数设置(顺序有没有要求,只要名字和参数对应就行)。“train_cmd”是cmd.sh里的一部分,很神奇。
第二行是输入输出文件。
gmm-init-mono
gmm-acc-stats-ali
gmm-est
gmm-align-compiled

data

  1. exp_new/mono/ final.mdl
    gmm-copy --binary=false final.mdl final_txt.mdl
  2. exp_new/mono/ final.occ
  3. exp_new/mono/tree
    copy-tree [--binary=false] <tree-in> <tree-out>
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容