Pandas之访问和删除 Pandas Series 中的元素

现在我们来了解如何访问或修改 Pandas Series 中的元素。Pandas Series 的一大优势是我们能够以很多不同的方式访问数据。我们可以通过在方括号 [ ] 内添加索引标签或数字索引访问元素,就像访问 NumPy ndarray 中的元素一样。因为我们可以使用数字索引,因此可以使用正整数从 Series 的开头访问数据,或使用负整数从末尾访问。因为我们可以通过多种方式访问元素,为了清晰地表明我们指代的是索引标签还是数字索引,Pandas Series 提供了两个属性 .loc.iloc,帮助我们清晰地表明指代哪种情况。属性 .loc 表示 位置,用于明确表明我们使用的是标签索引。同样,属性 .iloc 表示整型位置,用于明确表明我们使用的是数字索引。我们来看一些示例:

# We access elements in Groceries using index labels:

# We use a single index label
print('How many eggs do we need to buy:', groceries['eggs'])
print()

# we can access multiple index labels
print('Do we need milk and bread:\n', groceries[['milk', 'bread']]) 
print()

# we use loc to access multiple index labels
print('How many eggs and apples do we need to buy:\n', groceries.loc[['eggs', 'apples']]) 
print()

# We access elements in Groceries using numerical indices:

# we use multiple numerical indices
print('How many eggs and apples do we need to buy:\n',  groceries[[0, 1]]) 
print()

# We use a negative numerical index
print('Do we need bread:\n', groceries[[-1]]) 
print()

# We use a single numerical index
print('How many eggs do we need to buy:', groceries[0]) 
print()
# we use iloc to access multiple numerical indices
print('Do we need milk and bread:\n', groceries.iloc[[2, 3]]) 

How many eggs do we need to buy: 30

Do we need milk and bread:
milk Yes
bread No
dtype: object

How many eggs and apples do we need to buy:
eggs 30
apples 6
dtype: object

How many eggs and apples do we need to buy:
eggs 30
apples 6
dtype: object

Do we need bread:
bread No
dtype: object

How many eggs do we need to buy: 30

Do we need milk and bread:
milk Yes
bread No
dtype: object

和 NumPy ndarray 一样,Pandas Series 也是可变的,也就是说,创建好 Pandas Series 后,我们可以更改其中的元素。例如,我们更改下购物清单中的鸡蛋购买数量

# We display the original grocery list
print('Original Grocery List:\n', groceries)

# We change the number of eggs to 2
groceries['eggs'] = 2

# We display the changed grocery list
print()
print('Modified Grocery List:\n', groceries)

Original Grocery List:
eggs 30
apples 6
milk Yes
bread No
dtype: object

Modified Grocery List:
eggs 2
apples 6
milk Yes
bread No
dtype: object

我们还可以使用 .drop() 方法删除 Pandas Series 中的条目。Series.drop(label) 方法会从给定 Series 中删除给定的 label。请注意,Series.drop(label) 方法不在原地地从 Series 中删除元素,即不会更改被修改的原始 Series。我们来看看代码编写方式

# We display the original grocery list
print('Original Grocery List:\n', groceries)

# We remove apples from our grocery list. The drop function removes elements out of place
print()
print('We remove apples (out of place):\n', groceries.drop('apples'))

# When we remove elements out of place the original Series remains intact. To see this
# we display our grocery list again
print()
print('Grocery List after removing apples out of place:\n', groceries)

Original Grocery List:
eggs 30
apples 6
milk Yes

bread No
dtype: object

We remove apples (out of place):
eggs 30
milk Yes
bread No
dtype: object

Grocery List after removing apples out of place:
eggs 30
apples 6
milk Yes
bread No
dtype: object

我们可以通过在 .drop() 方法中将关键字 inplace 设为 True,原地地从 Pandas Series 中删除条目。我们来看一个示例:

# We display the original grocery list
print('Original Grocery List:\n', groceries)

# We remove apples from our grocery list in place by setting the inplace keyword to True
groceries.drop('apples', inplace = True)

# When we remove elements in place the original Series its modified. To see this
# we display our grocery list again
print()
print('Grocery List after removing apples in place:\n', groceries)

Original Grocery List:
eggs 30

apples 6
milk Yes
bread No
dtype: object

Grocery List after removing apples in place:
eggs 30
milk Yes
bread No
dtype: object

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,336评论 0 10
  • 为何要使用 Pandas? 机器学习算法能取得最近的飞速发展,部分原因就是我们可以用大量数据训练算法。但是,对于数...
    IntoTheVoid阅读 709评论 0 4
  • 冬至 当我与三年未见的秦俪相约在火锅的时候她在电话里扬言要是不把我吃穷跟我姓。我一直认为她始终对我抱着一种壮士断腕...
    微醺啊阅读 317评论 3 0
  • 大家好,我是一名心怀教育梦想的美术生,之前一直学的是素描、速写、水粉,近期才开始接触水彩这种绘画工具,画了一些还算...
    一一如水画轩一一阅读 6,161评论 0 12
  • 岩上无心云相逐1阅读 225评论 0 0