Pandas之创建 Pandas Series

为何要使用 Pandas?

机器学习算法能取得最近的飞速发展,部分原因就是我们可以用大量数据训练算法。但是,对于数据来说,数量并不是唯一重要的方面,数据质量也同等重要。经常大型数据库并不能直接馈送到学习算法中。很多时候,大型数据集缺失值、存在离群值、不正确的值,等等…例如,如果数据存在大量丢失值或糟糕值,机器学习算法将无法达到很好的性能。因此,机器学习的重要一步是首先检查数据,通过进行一些基本的数据分析,确保数据很适合你的训练算法。这时候,Pandas 就派上用场了。Pandas Series 和 DataFrame 专门用于快速进行数据分析和操纵,并且使用起来灵活简单。以下是使 Pandas 成为出色的数据分析软件包的几个功能:

  • 允许为行和列设定标签
  • 可以针对时间序列数据计算滚动统计学指标
  • 轻松地处理 NaN 值
  • 能够将不同格式的数据加载到 DataFrame 中
  • 可以将不同的数据集合并到一起
  • 与 NumPy 和 Matplotlib 集成

因为这些原因以及其他原因,Pandas DataFrame 已经成为 Python 中最常用的数据分析 Pandas 对象之一。

创建 Pandas Series

Pandas series 是一个像数组一样的一维对象,可以存储很多类型的数据,例如数字或字符串。Pandas Series 和 NumPy ndarray 之间的主要区别之一是你可以为 Pandas Series 中的每个元素分配索引标签。换句话说,你可以为 Pandas Series 索引指定任何名称。Pandas Series 和 NumPy ndarrays 之间的另一个明显区别是 Pandas Series 可以存储不同类型的数据。

我们先在 Python 中导入 Pandas。通常,我们使用 pd 导入 Pandas。因此,你可以在 Jupyter Notebook 中输入以下命令,导入 Pandas:

import pandas as pd

我们先创建一个 Pandas Series。你可以使用 pd.Series(data, index) 命令创建 Pandas Series,其中 index 是一个索引标签列表。我们使用 Pandas Series 存储一个购物清单。我们将使用食品条目作为索引标签,使用购买数量作为数据。

# We import Pandas as pd into Python
import pandas as pd

# We create a Pandas Series that stores a grocery list
groceries = pd.Series(data = [30, 6, 'Yes', 'No'], index = ['eggs', 'apples', 'milk', 'bread'])

# We display the Groceries Pandas Series
groceries

eggs 30
apples 6
milk Yes
bread No
dtype: object

可以看出 Pandas Series 的显示方式为:第一列是索引,第二列是数据。注意,数据的索引不是从 0 到 3,而是采用我们设置的食品名称,即鸡蛋、苹果、等...此外注意,我们的 Pandas Series 中的数据既包括整数,又包括字符串。

和 NumPy ndarray 一样,通过 Pandas Series 的一些属性,我们可以轻松地获取 series 中的信息。我们来看一些属性:

# We print some information about Groceries
print('Groceries has shape:', groceries.shape)
print('Groceries has dimension:', groceries.ndim)
print('Groceries has a total of', groceries.size, 'elements')

Groceries has shape: (4,)
Groceries has dimension: 1
Groceries has a total of 4 elements

我们还可以单独输出 Pandas Series 的索引标签和数据。如果你不知道 Pandas Series 的索引标签是什么,这种方法就很有用。

# We print the index and data of Groceries
print('The data in Groceries is:', groceries.values)
print('The index of Groceries is:', groceries.index)

The data in Groceries is: [30 6 'Yes' 'No']
The index of Groceries is: Index(['eggs', 'apples', 'milk', 'bread'], dtype='object')

如果你处理的是非常庞大的 Pandas Series,并且不清楚是否存在某个索引标签,可以使用 in 命令检查是否存在该标签:

# We check whether bananas is a food item (an index) in Groceries
x = 'bananas' in groceries

# We check whether bread is a food item (an index) in Groceries
y = 'bread' in groceries

# We print the results
print('Is bananas an index label in Groceries:', x)
print('Is bread an index label in Groceries:', y)

Is bananas an index label in Groceries: False
Is bread an index label in Groceries: True

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,185评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,652评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,524评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,339评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,387评论 6 391
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,287评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,130评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,985评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,420评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,617评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,779评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,477评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,088评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,716评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,857评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,876评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,700评论 2 354

推荐阅读更多精彩内容