搜索产品背后的逻辑

作者:hooly

微信公众号:一口袋星光

图片来自简书APP

什么是搜索?

根据提供的已知信息,给用户提供符合各方利益诉求的内容。

图片来自简书APP

搜索的主体:

1.搜索的用户

2.输入的内容(关键词/图片/语音)

3.检索规则

4.搜索结果的处理

搜索流程:

搜索流程

检索原理:

若干一个词库,搜索词按照规范化处理以后,进行分词,分词完成之后,和词库中词语做匹配,匹配命中的,则不再拆词,拆词节后之后,用拆好的词去搜索。

检索查询-分词:

1.规范化处理:

去除标点符号 加减号、空格等;通过配置文件去除干扰词,“你、我、他”等

2.分词方式:

中英文分开;根据空格分词;把输入词和词库进行匹配,按照词库词语进行分词。命中则不分词。

现有的中文分词算法可分为三大类:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法。下面介绍下第一类分词方法

基于字符串匹配的分词方法

这种方法又叫做机械分词方法,它是按照一定的策略将待分析的汉字串与一个“充分大的”机器词库中的词条进行配,若在词库中找到某个字符串,则匹配成功(识别出一个词)。按照扫描方向的不同,串匹配分词方法可以分为正向匹配和逆向匹配;按照不同长度优先匹配的情况,可以分为最大(最长)匹配和最小(最短)匹配;按照是否与词性标注过程相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。常用的几种机械分词方法如下:

1)正向最大匹配法(由左到右的方向);

2)逆向最大匹配法(由右到左的方向);

3)最少切分(使每一句中切出的词数最小)。

3.词库

词库可以有很多内容:比如商品标题;品牌;属性;描述;店铺;分类...每个词库也会有对应的权重,而影响最后的排序。

检索查询-匹配命中方式:

首词命中:指输入词与结果首位词匹配,如用户输入“汉庭”,结果匹配汉庭快捷酒店(新街口店)

包含命中:是指输入词在结果中包含,如用户:输入“大四”,结果匹配牡丹江大四方旅馆;

排序规则:

静态-相关性:词相关性、字段相关性、文本匹配;字段类型:标题、同义标题、品牌、属性、描述、店铺、分类等...

动态-业务因素:库存、单品反馈(收藏、购买、点击)、更新时间、促销

动态-商业因素:销售金额、销售额、评论数、商品评分、店铺评分

动态-个性化因素:个人历史行为,个人喜好等...

搜索权重

搜索系统的架构:

搜索系统架构

作者:hooly

微信公众号:一口袋星光

我会在微信公号上持续更新我的文章,你来讨论我很欢迎。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容

  • 常用概念: 自然语言处理(NLP) 数据挖掘 推荐算法 用户画像 知识图谱 信息检索 文本分类 常用技术: 词级别...
    御风之星阅读 9,169评论 1 25
  • 转载请注明:终小南 » 中文分词算法总结 什么是中文分词众所周知,英文是以 词为单位的,词和词之间是靠空格隔开,而...
    kirai阅读 9,823评论 3 24
  • 前面的文章主要从理论的角度介绍了自然语言人机对话系统所可能涉及到的多个领域的经典模型和基础知识。这篇文章,甚至之后...
    我偏笑_NSNirvana阅读 13,900评论 2 64
  • Solr&ElasticSearch原理及应用 一、综述 搜索 http://baike.baidu.com/it...
    楼外楼V阅读 7,279评论 1 17
  • 我们这一代人啊,貌似是传说中最sui的那一代。我们考大学,学士就遍地走了,我们买房子,房价涨成了天价,我们的孩子要...
    焦糖爆米花阅读 1,391评论 0 1