相关性分析

在我们进行数据处理时,相关性分析是我们最常使用的分析方法之一。相关性,即衡量二个特征或者两个变量之间的关联程度。两个变量的相关关系意味着二者之间存在着某种数学关系。我们并不知道两个变量之间是否存在着实际关系通常我们计算的是两个特征的数组之间的相关系数。我们常用的相关性计算方法有哪些呢?

pearson相关系数:

Pearson correlation coefficient:用于检测两个变量是否线性相关,要求数据需来自于正态分布的总。相关系数在[-1,1]之间
ρ(X,Y)= \frac{cov(X,Y)}{\delta X \delta Y}=\frac{((E-\mu X)(Y-\mu Y))}{\delta X \delta Y}= \frac{E(XY)-E(X)E(Y)}{\sqrt{E(X^2)-E^2(X)} \sqrt{E(Y^2)-E^2(Y)}}
cov(X,Y)协方差 (δX*δY) 二者标准差的乘积。
常规相关等级如下:
r = 0 二者完全不相关
0<|r|<=0.3 弱相关
0.3<|r|<=0.5 中等相关
0.5<|r|<=0.8 显著相关
0.8<|r|<=1 强相关
皮尔森相关系数适用范围:
适用于服从正态分布的两连续型变量,可绘制散点图,发现有线性趋势之后,进而计算Pearson相关系数,以此描述两变量的线性相关性。

Spearman秩相关系数

Spearman 相关评估两个连续或顺序变量之间的单调关系。在单调关系中,变量倾向于同时变化,但不一定以恒定的速率变化。Spearman 相关系数基于每个变量的秩值(而非原始数据)。Spearman 相关通常用于评估与顺序变量相关的关系。
r_s = 1 - \frac{6 \sum {d_{i}^{2}}} {n(n^2 -1)} \\ d_i = rg(X_i) -rg(Y_i) \\ n表示数据的数量,d_i 表示数据次序的差值
优势:

  • 1、即便在变量值没有变化的情况下,也不会出现像皮尔森系数那样分母为0而无法计算的情况。
  • 2、 即使出现异常值,由于异常值的秩次通常不会有明显的变化(比如过大或者过小,那要么排第一,要么排最后),所以对斯皮尔曼相关性系数的影响也非常小
  • 3、 斯皮尔曼相关性系数没有那些数据条件要求,适用的范围广

肯德尔相关性系数

Kendall's tau-b(肯德尔)等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在[-1,1]之间,此检验适合于正方形表格。
kendall tau coefficent defined:
\tau = \frac{4P}{n(n-1)} -1
from MBA智库-Kendall等级相关系数
使用试剂:肯德尔等级相关系数是用以反应两组变量之间关系密切程度的统计指标。
(用的较少,后续再补充)
一般的都可以使用pearson和Spearman相关系数解决。

最大信息系数

进行机器学习特征筛选时,经常使用到的方法就有最大互信息系数。
最大信息系数(MIC)于 2011 年提出,它是用于检测变量之间非线性相关性的最新方法。用于进行 MIC 计算的算法将信息论和概率的概念应用于连续型数据。
MIC 能够表示各种线性和非线性的关系,并已得到广泛应用。它的值域在 0 和 1 之间,值越高表示相关性越强。
见参考资料《最大信息系数》

更多的需要学习(任重而道远啊,。。。。。)


算法对比

参考资料

三大相关系数
斯皮尔曼相关系数
线性系数,斯皮尔曼相关性系数计算及详解
肯德尔等级相关系数
最大信息系数

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容