一、运行时数据区域
1、程序计数器
可以看作是当前线程所执行的字节码的行号指示器。每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
2、Java虚拟机栈
每个方法在执行的同时都会创建一个栈帧用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。Java虚拟机栈是线程私有的,它的生命周期与线程相同。
局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。
如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果虚拟机栈可以动态扩展,如果扩展时无法申请到足够的内存,就会抛出OutOfMemoryError异常。
3、本地方法栈
本地方法栈为虚拟机使用到的Native方法服务。本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。
4、Java堆
Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,是垃圾收集器管理的主要区域。
根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过Xmx和Xms控制)。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。
5、方法区
方法区(MethodArea)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。
运行时常量池(RuntimeConstantPool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(ConstantPoolTable),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。
二、对象的创建
1)分配内存
虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。假设Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump the Pointer)。如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(FreeList)。
除如何划分可用空间之外,还有另外一个需要考虑的问题是对象创建在虚拟机中是非常频繁的行为,即使是仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。解决这个问题有两种方案,一种是对分配内存空间的动作进行同步处理——实际上虚拟机采用CAS配上失败重试的方式保证更新操作的原子性;另一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)。哪个线程要分配内存,就在哪个线程的TLAB上分配,只有TLAB用完并分配新的TLAB时,才需要同步锁定。虚拟机是否使用TLAB,可以通过XX:+/UseTLAB参数来设定。
2)初始化为零值
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值,这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。接下来,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头(ObjectHeader)之中。
3)init
一般来说(由字节码中是否跟随invoke special指令所决定),执行new指令之后会接着执行<init>方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。
三、对象的访问定位
Java程序需要通过栈上的reference数据来操作堆上的具体对象。目前主流的访问方式有使用句柄和直接指针两种。
1)如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息。使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。
2)直接指针
如果使用直接指针访问,那么Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而reference中存储的直接就是对象地址。使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。
四、内存溢出
1)Java堆溢出
通过参数XX:+HeapDumpOnOutOfMemoryError可以让虚拟机在出现内存溢出异常时Dump出当前的内存堆转储快照。
先分清楚到底是出现了内存泄漏(MemoryLeak)还是内存溢出(MemoryOverflow)。
如果不存在泄露,就是内存中的对象确实都还必须存活着,那就应当检查虚拟机的堆参数(Xmx与Xms),与机器物理内存对比看是否还可以调大,从代码上检查是否存在某些对象生命周期过长、持有状态时间过长的情况,尝试减少程序运行期的内存消耗。
2)虚拟机栈和本地方法栈溢出
由Xss参数设定栈容量。
如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。
如果虚拟机在扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常。
当栈空间无法继续分配时,可能是内存太小,也可能是已使用的栈空间太大。
在单个线程下,无论是由于栈帧太大还是虚拟机栈容量太小,当内存无法分配的时候,虚拟机抛出的都是StackOverflowError异常。
不断地建立线程会产生内存溢出异常。但是这样产生的内存溢出异常与栈空间是否足够大并不存在任何联系,或者准确地说,在这种情况下,为每个线程的栈分配的内存越大,反而越容易产生内存溢出异常。其实原因不难理解,操作系统分配给每个进程的内存是有限制的,譬如32位的Windows限制为2GB。虚拟机提供了参数来控制Java堆和方法区的这两部分内存的最大值。剩余的内存为2GB(操作系统限制)减去Xmx(最大堆容量),再减去MaxPermSize(最大方法区容量),程序计数器消耗内存很小,可以忽略掉。如果虚拟机进程本身耗费的内存不计算在内,剩下的内存就由虚拟机栈和本地方法栈“瓜分”了。每个线程分配到的栈容量越大,可以建立的线程数量自然就越少,建立线程时就越容易把剩下的内存耗尽。
如果是建立过多线程导致的内存溢出,在不能减少线程数或者更换64位虚拟机的情况下,就只能通过减少最大堆和减少栈容量来换取更多的线程。如果没有这方面的处理经验,这种通过“减少内存”的手段来解决内存溢出的方式会比较难以想到。
3)方法区和运行时常量池溢出
由于常量池分配在永久代内,我们可以通过XX:PermSize和XX:MaxPermSize限制方法区大小。
方法区用于存放Class的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。运行时如果产生大量的类填满方法区,会导致内存溢出。
参考:
《深入理解Java虚拟机:JVM高级特性与最佳实践》