背景
最近闲来无事,突然有了兴致想写一篇文章。之前一直在用retrofit2+rxjava2的网络框架,对里面的实现逻辑一直很好奇,翻了一遍网上的源码解析,基本上都是拆开单独的解析。于是花了差不多有一周的时间将里面的实现逻辑整理了一遍。
第一次写简书,排版问题请多见谅。
retrofit2的实现原理
retrofit2严格意义上说其实并不算是一个网络框架,因为里面发起网络请求用的依然是OKHttp。那么retrofit2到底是个什么?请随我仔细阅读以下的源码应该就能知道了。
话不多说先上代码:
1、定义了接口,然后通过注解的方式封装了地址和请求参数
/**
* Created by chendanfeng on 2018/3/19.
* 定义的请求服务器的API的接口
*/
public interface APIFunction {
/**
* 登录请求
* @param map 请求参数
* @return
*/
@POST(HttpConfig.REQUEST_LOGIN)
Call<ResponseBean<String>> login(@Body Map<String,Object> map);
}
上图可以看出注解主要用了@POST和@Body。@POST代表的是请求方式是post,@Body代表的是请求体
2、初始化retrofit
//共通参数拦截器
HeaderParamInterceptor commonParamInterceptor = new HeaderParamInterceptor();
// 初始化okhttp
OkHttpClient client = new OkHttpClient.Builder()
.addInterceptor(commonParamInterceptor)
.build();
// 初始化Retrofit
mRetrofit = new Retrofit.Builder()
.client(client)
.baseUrl(HttpConfig.IP)
.addConverterFactory(GsonConverterFactory.create())//添加gson转换器
.build();
// 初始化Service
mApiFunction = mRetrofit.create(APIFunction.class);
2.1 先看下Retrofit的Builder方法:
Builder(Platform platform) {
this.platform = platform;
// Add the built-in converter factory first. This prevents overriding its behavior but also
// ensures correct behavior when using converters that consume all types.
converterFactories.add(new BuiltInConverters());
}
public Builder() {
this(Platform.get());
}
class Platform {
private static final Platform PLATFORM = findPlatform();
static Platform get() {
return PLATFORM;
}
//因为是Android设备,所以这里返回的肯定是Android对象
private static Platform findPlatform() {
try {
Class.forName("android.os.Build");
if (Build.VERSION.SDK_INT != 0) {
return new Android();
}
} catch (ClassNotFoundException ignored) {
}
try {
Class.forName("java.util.Optional");
return new Java8();
} catch (ClassNotFoundException ignored) {
}
return new Platform();
}
...代码省略...
static class Android extends Platform {
...代码省略...
}
}
请记住此时返回的Android对象,之后会有用处。
2.2 然后着重看下retrofit2的build方法:
/**
* Create the {@link Retrofit} instance using the configured values.
* <p>
* Note: If neither {@link #client} nor {@link #callFactory} is called a default {@link
* OkHttpClient} will be created and used.
*/
public Retrofit build() {
if (baseUrl == null) {
throw new IllegalStateException("Base URL required.");
}
okhttp3.Call.Factory callFactory = this.callFactory;
if (callFactory == null) {
callFactory = new OkHttpClient();
}
Executor callbackExecutor = this.callbackExecutor;
if (callbackExecutor == null) {
callbackExecutor = platform.defaultCallbackExecutor();
}
// Make a defensive copy of the adapters and add the default Call adapter.
List<CallAdapter.Factory> adapterFactories = new ArrayList<>(this.adapterFactories);
adapterFactories.add(platform.defaultCallAdapterFactory(callbackExecutor));
// Make a defensive copy of the converters.
List<Converter.Factory> converterFactories = new ArrayList<>(this.converterFactories);
return new Retrofit(callFactory, baseUrl, converterFactories, adapterFactories,
callbackExecutor, validateEagerly);
}
}
看源码发现:
如果没有callFactory的话就会new出一个OkHttp,换句话说如果OkHttp没有什么特殊要求的话,在初始化retrofit的时候client方法其实可以不需要调用。
另外这里的platform就是Android对象,下面这段便是Android类的方法,所以build方法里面的callbackExecutor便是MainThreadExecutor对象,adapterFactories所add进去的CallAdapter.Factory就是ExecutorCallAdapterFactory对象。
@Override public Executor defaultCallbackExecutor() {
return new MainThreadExecutor();
}
@Override CallAdapter.Factory defaultCallAdapterFactory(@Nullable Executor callbackExecutor) {
if (callbackExecutor == null) throw new AssertionError();
return new ExecutorCallAdapterFactory(callbackExecutor);
}
static class MainThreadExecutor implements Executor {
private final Handler handler = new Handler(Looper.getMainLooper());
@Override public void execute(Runnable r) {
handler.post(r);
}
}
2.3 最后看一下Retrofit的create方法:
public <T> T create(final Class<T> service) {
Utils.validateServiceInterface(service);
if (validateEagerly) {
eagerlyValidateMethods(service);
}
return (T) Proxy.newProxyInstance(service.getClassLoader(), new Class<?>[] { service },
new InvocationHandler() {
private final Platform platform = Platform.get();
@Override public Object invoke(Object proxy, Method method, @Nullable Object[] args)
throws Throwable {
// If the method is a method from Object then defer to normal invocation.
if (method.getDeclaringClass() == Object.class) {
return method.invoke(this, args);
}
if (platform.isDefaultMethod(method)) {
return platform.invokeDefaultMethod(method, service, proxy, args);
}
ServiceMethod<Object, Object> serviceMethod =
(ServiceMethod<Object, Object>) loadServiceMethod(method);
OkHttpCall<Object> okHttpCall = new OkHttpCall<>(serviceMethod, args);
return serviceMethod.callAdapter.adapt(okHttpCall);
}
});
}
2.3.1.首先需要预加载接口中所有的方法
private void eagerlyValidateMethods(Class<?> service) {
Platform platform = Platform.get();
for (Method method : service.getDeclaredMethods()) {
if (!platform.isDefaultMethod(method)) {
loadServiceMethod(method);
}
}
}
ServiceMethod<?, ?> loadServiceMethod(Method method) {
ServiceMethod<?, ?> result = serviceMethodCache.get(method);
if (result != null) return result;
synchronized (serviceMethodCache) {
result = serviceMethodCache.get(method);
if (result == null) {
result = new ServiceMethod.Builder<>(this, method).build();
serviceMethodCache.put(method, result);
}
}
return result;
}
2.3.2.返回了一个Proxy.newProxyInstance动态代理对象
/**
* 登录请求
* @param map 请求参数
* @return
*/
@POST(HttpConfig.REQUEST_LOGIN)
Call<ResponseBean<String>> login(@Body Map<String,Object> map);
以上面这个接口为例,当调用login的接口时,动态代理会进行拦截,然后调用invoke方法。
2.3.3.那么来看一下invoke方法里面到底有什么操作吧
- 主要其实就是三步:
(1).loadServiceMethod方法:判断下当前serviceMethodCache中有没有指定的method,如果没有就创建个。
(2).初始化OkHttpCall
(3).调用servicemethod的callAdapter对象的adapt方法
(1).那么就来看下ServiceMethod的Builder方法了:
public ServiceMethod build() {
callAdapter = createCallAdapter();
...省略...
//通过之前传入的gson转换器工厂创建gson的转换器
responseConverter = createResponseConverter();
for (Annotation annotation : methodAnnotations) {
parseMethodAnnotation(annotation);
}
...省略...
//将所有的注解归类组成一个ParameterHandler的数组
int parameterCount = parameterAnnotationsArray.length;
parameterHandlers = new ParameterHandler<?>[parameterCount];
for (int p = 0; p < parameterCount; p++) {
Type parameterType = parameterTypes[p];
if (Utils.hasUnresolvableType(parameterType)) {
throw parameterError(p, "Parameter type must not include a type variable or wildcard: %s",
parameterType);
}
Annotation[] parameterAnnotations = parameterAnnotationsArray[p];
if (parameterAnnotations == null) {
throw parameterError(p, "No Retrofit annotation found.");
}
parameterHandlers[p] = parseParameter(p, parameterType, parameterAnnotations);
}
...省略...
return new ServiceMethod<>(this);
}
先看createCallAdapter->callAdapter->nextCallAdapter->adapterFactory.get()方法。还记得之前的ExecutorCallAdapterFactory对象么,就是这里的adapterFactories.get(i),下图便是ExecutorCallAdapterFactory的get方法。
@Override
public CallAdapter<?, ?> get(Type returnType, Annotation[] annotations, Retrofit retrofit) {
if (getRawType(returnType) != Call.class) {
return null;
}
final Type responseType = Utils.getCallResponseType(returnType);
return new CallAdapter<Object, Call<?>>() {
@Override public Type responseType() {
return responseType;
}
@Override public Call<Object> adapt(Call<Object> call) {
return new ExecutorCallbackCall<>(callbackExecutor, call);
}
};
}
所以serviceMethod对象里面的callAdapter便是在这里初始化的,可以先记下这里的adapt方法,后面会用到
parseMethodAnnotation就是对每个注解进行解析,将注解转换成网络请求所需的各种配置。一开始的@POST和@Body便是在这个方法里面进行解析的,具体可以自行查看源码, 这里不做分析。
(2).初始化OkHttpCall
这一步就是将serviceMethod传入
(3).调用serviceMethod的callAdapter对象的adapt方法
这里的serviceMethod.callAdapter就是之前创建ServiceMethod时,返回的callAdapter方法
@Override public Call<Object> adapt(Call<Object> call) {
return new ExecutorCallbackCall<>(callbackExecutor, call);
}
返回的是一个ExecutorCallbackCall对象,并且将OkHttpCall对象传入
到此为止,retrofit2的初始化工作已经全部完成,那么接下来就看下是如何执行网络请求的
3.进行网络请求操作
先上代码:
RetrofitFactory.getInstance().API().login(map).enqueue(new Callback<ResponseBean<String>>() {
@Override
public void onResponse(Call<ResponseBean<String>> call, Response<ResponseBean<String>> response) {
}
@Override
public void onFailure(Call<ResponseBean<String>> call, Throwable t) {
}
});
直接进入正题,前面讲到最后返回的是ExecutorCallbackCall,正是现在这个对象将要执行enqueue方法,那么为什么调用login的接口会返回ExecutorCallbackCall对象呢,就是之前提到过的动态代理调用了invoke方法返回的。
3.1 那么进入ExecutorCallbackCall的代码:
static final class ExecutorCallbackCall<T> implements Call<T> {
final Executor callbackExecutor;
final Call<T> delegate;
ExecutorCallbackCall(Executor callbackExecutor, Call<T> delegate) {
this.callbackExecutor = callbackExecutor;
this.delegate = delegate;
}
@Override public void enqueue(final Callback<T> callback) {
checkNotNull(callback, "callback == null");
delegate.enqueue(new Callback<T>() {
@Override public void onResponse(Call<T> call, final Response<T> response) {
callbackExecutor.execute(new Runnable() {
@Override public void run() {
if (delegate.isCanceled()) {
// Emulate OkHttp's behavior of throwing/delivering an IOException on cancellation.
callback.onFailure(ExecutorCallbackCall.this, new IOException("Canceled"));
} else {
callback.onResponse(ExecutorCallbackCall.this, response);
}
}
});
}
@Override public void onFailure(Call<T> call, final Throwable t) {
callbackExecutor.execute(new Runnable() {
@Override public void run() {
callback.onFailure(ExecutorCallbackCall.this, t);
}
});
}
});
}
@Override public boolean isExecuted() {
return delegate.isExecuted();
}
@Override public Response<T> execute() throws IOException {
return delegate.execute();
}
@Override public void cancel() {
delegate.cancel();
}
@Override public boolean isCanceled() {
return delegate.isCanceled();
}
@SuppressWarnings("CloneDoesntCallSuperClone") // Performing deep clone.
@Override public Call<T> clone() {
return new ExecutorCallbackCall<>(callbackExecutor, delegate.clone());
}
@Override public Request request() {
return delegate.request();
}
}
其实ExecutorCallbackCall并没有做什么事情,处理事情全部交给了代理来做,那么这个代理是什么呢。没错,就是ExecutorCallbackCall初始化的时候传入的OkHttpCall对象
3.2 接下来进入OkHttpCall的代码
终于进入到了关键的地方,代码有几百行,我们只关心enqueue方法:
@Override public void enqueue(final Callback<T> callback) {
checkNotNull(callback, "callback == null");
okhttp3.Call call;
Throwable failure;
synchronized (this) {
if (executed) throw new IllegalStateException("Already executed.");
executed = true;
call = rawCall;
failure = creationFailure;
if (call == null && failure == null) {
try {
call = rawCall = createRawCall();
} catch (Throwable t) {
failure = creationFailure = t;
}
}
}
if (failure != null) {
callback.onFailure(this, failure);
return;
}
if (canceled) {
call.cancel();
}
call.enqueue(new okhttp3.Callback() {
@Override public void onResponse(okhttp3.Call call, okhttp3.Response rawResponse)
throws IOException {
Response<T> response;
try {
response = parseResponse(rawResponse);
} catch (Throwable e) {
callFailure(e);
return;
}
callSuccess(response);
}
@Override public void onFailure(okhttp3.Call call, IOException e) {
try {
callback.onFailure(OkHttpCall.this, e);
} catch (Throwable t) {
t.printStackTrace();
}
}
private void callFailure(Throwable e) {
try {
callback.onFailure(OkHttpCall.this, e);
} catch (Throwable t) {
t.printStackTrace();
}
}
private void callSuccess(Response<T> response) {
try {
callback.onResponse(OkHttpCall.this, response);
} catch (Throwable t) {
t.printStackTrace();
}
}
});
}
//创建了Okhttp3.Call对象,这个对象才是真正进行网络请求的
private okhttp3.Call createRawCall() throws IOException {
//将之前组装好的ParameterHandler数组拿过来,组成完成的httpUrl
Request request = serviceMethod.toRequest(args);
//这个地方的callFactory便是okHttpClient
okhttp3.Call call = serviceMethod.callFactory.newCall(request);
if (call == null) {
throw new NullPointerException("Call.Factory returned null.");
}
return call;
}
通过createRawCall方法创建出OKhttp的call对象,然后通过call对象进行网络请求(OKHttp3的实现原理本文暂不解析,以后有机会再给大家发一篇)。
3.3 网络请求回调处理
上面说了网络请求是通过OkHttp的call对象进行的,那么回调自然也就调用Okhttp的call对象的回调方法。
通过3.2发现call对象的回调方法回来以后,调用了callback的方法,那么这个callback是什么呢。我们把代码返回到ExecutorCallbackCall里面去:
delegate.enqueue(new Callback<T>() {
@Override public void onResponse(Call<T> call, final Response<T> response) {
callbackExecutor.execute(new Runnable() {
@Override public void run() {
if (delegate.isCanceled()) {
// Emulate OkHttp's behavior of throwing/delivering an IOException on cancellation.
callback.onFailure(ExecutorCallbackCall.this, new IOException("Canceled"));
} else {
callback.onResponse(ExecutorCallbackCall.this, response);
}
}
});
}
@Override public void onFailure(Call<T> call, final Throwable t) {
callbackExecutor.execute(new Runnable() {
@Override public void run() {
callback.onFailure(ExecutorCallbackCall.this, t);
}
});
}
});
这里面的callbackExecutor就是2.2里面new出的MainThreadExecutor对象,再来看下MainThreadExecutor的代码:
static class MainThreadExecutor implements Executor {
private final Handler handler = new Handler(Looper.getMainLooper());
@Override public void execute(Runnable r) {
handler.post(r);
}
}
看到这里恍然大悟,终于明白了为什么明明enqueue是个异步操作,返回参数以后可以直接修改UI,原来就在这里切换回到主线程了。
总结
retrofit2其实就是将Java接口以及对应的注解翻译成一个HttpURL,然后通过OkHttp进行网络请求。