Hive的架构剖析

本文主要介绍Hive的架构和以及HQL的查询阶段,主要内容包括:

  • Hive的架构
  • 架构中的相关组件介绍
  • HQL的查询阶段

Hive的架构

hive的基本架构图如下图所示:

相关组件介绍

  • 数据存储

Hive中的数据可以存储在任意与Hadoop兼容的文件系统,其最常见的存储文件格式主要有ORC和Parquet。除了HDFS之外,也支持一些商用的云对象存储,比如AWS S3等。另外,Hive可以读入并写入数据到其他的独立处理系统,比如Druid、HBase等。

  • Data catalog

Hive使用Hive Metastore(HMS)存储元数据信息,使用关系型数据库来持久化存储这些信息,其依赖于DataNucleus(提供了标准的接口(JDO, JPA)来访问各种类型的数据库资源 ),用于简化操作各种关系型数据库。为了请求低延迟,HMS会直接通过DataNucleus直接查询关系型数据库。HMS的API支持多种编程语言。

  • 执行引擎

最初版本的Hive支持MapReduce作为执行引擎,后来又支持

Tez和Spark作为执行引擎,这些执行引擎都可以运行在YARN上。

  • 查询服务

Hiveserver2(HS2)允许用户执行SQL查询,Hiveserver2允许多个客户端提交请求到Hive并返回执行结果,HS2支持本地和远程JDBC和ODBC连接,另外Hive的发布版中包括一个JDBC的客户端,称之为Beeline。

  • Hive客户端

Hive支持多种客户端,比如Python, Java, C++, Ruby等,可以使用JDBC、ODBC和Thrift drivers连接Hive,Hive的客户端主要归为3类:

(1)Thrift Clients

Hive的Server是基于Apache Thrift的,所以支持thrift客户端的查询请求

(2)JDBC Client

允许使用Java通过JDBC driver连接Hive,JDBC driver使用Thrift与Hive进行通信的

(3)ODBC Client

Hive的ODBC driver允许使用基于ODBC协议的应用来连接Hive,与JDBC driver类似,ODBC driver也是通过Thrift与Hive server进行通信的

  • Hive Driver

Hive Driver接收来自客户端提交的HQL语句,创建session handles,并将查询发送到Compiler(编译器)。

  • Hive Compiler

Hive的Compiler解析查询语句,编译器会借助Hive的metastore存储的元数据信息,对不同的查询块和查询表达式执行语义分析和类型检查,然后生成执行计划。

编译器生成的执行计划就是DAG,每个Stage可能代表一个MR作业。

  • Optimizer(优化器)

比如列裁剪、谓词下推等优化,提升查询效率

执行过程

  • Step1:执行查询

    通过客户端提交查询

  • Step2:获取执行计划

    dirver接收到查询,会创建session handle,并将该查询传递给编译器,生成执行计划

  • Step3:获取元数据

    编译器会向metastore发送获取元数据的请求

  • Step4:发送元数据

    metastore向编译器发送元数据,编译器使用元数据执行类型检查和语义分析。编译器会生成执行计划(DAG),对于MapReduce作业而言,执行计划包括map operator trees

    reduce operator tree

  • Step5:发送执行计划

    编译器向Driver发送生成的执行计划

  • Step6:执行查询计划

    从编译器那里获取执行计划之后,Driver会向执行引擎发送执行计划

  • Step7:提交MR作业

  • Step8:返回查询结果

将查询结果通过Driver返回个查询客户端

HQL的查询阶段

Hive的查询阶段如下图所示,具体分析如下:

如上图所示,

  • 1.用户提交查询到HS2
  • 2.该查询被Driver处理,由编译器会解析该查询语句并从AST中生成一个Calcite逻辑计划
  • 3.优化逻辑计划,HS2会访问关于HMS的元数据信息,用来达到验证和优化的目的
  • 4.优化的逻辑计划被转换为物理执行计划
  • 5.向量化的执行计划
  • 6.生成具体的task,可以是mr或者spark、Tez,并通过Driver提交任务到YARN
  • 7.执行结束后将结果返回给用户

总结

本文首先介绍了Hive的架构,并对每个组件进行了描述。然后阐述了Hive的具体执行过程,最后对HQL的执行阶段进行了说明。

公众号『大数据技术与数仓』,回复『资料』领取大数据资料包

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353