常见的内存问题解决方法

一、常见的命令及工具

1、jps 查看jvm运行的进程
2、jinfo 查看虚拟机配置
3、jstat 查看运行时的数据情况
4、jhat 查看堆情况
5、jstack 查看栈的情况

jconsole 可以监控虚拟机运行的内存情况分析内存

二、内存分配简单问题分析

1、堆内存溢出:

分配的对象内存过大,查看内存GC ROOT的引用情况,是都对象都是有用的,有垃圾对象查看什么原因造成的。都是正常的可以考虑加大堆内存的配置(-Xms,-Xmx)

2、栈内存溢出:

栈内存溢出有可能是线程过多造成,避免开启不必要的线程。另外可以考虑加大栈的内存(-Xss,无效果的话可以考虑减小堆内存在增大栈内存。每个进程可用内存是有限制的,堆内存过高的话栈是分配不到太大的内存的)

3、方法区溢出:

经常利用字节码增强产生大量的类或者jsp等技术可能造成溢出。尽量避免类的重复加载,修改MaxPermSize大小

4、直接内存溢出:

可通过–XX:MaxDirectMemorySize指定。默认与Java堆得最大值一样。

三、JVM 相关参数

参数名参数说明

-server

启用能够执行优化的编译器, 显著提高服务器的性能,但使用能够执行优化的编译器时,服务器的预备时间将会较长。生产环境的服务器强烈推荐设置此参数。

-Xss

单个线程堆栈大小值;JDK5.0 以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

-XX:+UseParNewGC

可用来设置年轻代为并发收集【多CPU】,如果你的服务器有多个CPU,你可以开启此参数;开启此参数,多个CPU 可并发进行垃圾回收,可提高垃圾回收的速度。此参数和+UseParallelGC,-XX:ParallelGCThreads搭配使用。

+UseParallelGC

选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。可提高系统的吞吐量。

-XX:ParallelGCThreads

年轻代并行垃圾收集的前提下(对并发也有效果)的线程数,增加并行度,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。永久存储区相关参数:参数名参数说明

-Xnoclassgc

每次永久存储区满了后一般GC 算法在做扩展分配内存前都会触发一次FULL GC,除非设置了-Xnoclassgc.

-XX:PermSize

应用服务器启动时,永久存储区的初始内存大

-XX:MaxPermSize

应用运行中,永久存储区的极限值。为了不消耗扩大JVM 永久存储区分配的开销,将此参数和-XX:PermSize这个两个值设为相等。堆空间相关参数参数名参数说明

-Xms

启动应用时,JVM 堆空间的初始大小值。

-Xmx

应用运行中,JVM 堆空间的极限值。为了不消耗扩大JVM 堆控件分配的开销,将此参数和-Xms 这个两个值设为相等,考虑到需要开线程,讲此值设置为总内存的80%.

-Xmn

此参数硬性规定堆空间的新生代空间大小,推荐设为堆空间大小的1/4。

上面所列的JVM 参数关系到系统的性能,

而其中-XX:PermSize,-XX:MaxPermSize,-Xms,-Xmx 和-Xmn 这5 个参数更是直接关系到系统的性能,系统是否会出现内存溢出。

-XX:PermSize 和-XX:MaxPermSize 分别设置应用服务器启动时,永久存储区的初始大小和极限大小;在生成环境中强烈推荐将这个两个值设置为相同的值,以避免分配永久存储区的开销,具体的值可取系统“疲劳测试”获取到的永久存储区的极限值;如果不进行设置-XX:MaxPermSize 默认值为64M,一般来说系统的类定义文件大小都会超过这个默认值。

-Xms 和-Xmx 分别是服务器启动时,堆空间的初始大小和极限值。-Xms的默认值是物理内存的1/64 但小于1G,-Xmx 的默认值是物理内存的1/4 但小于1G.在生产环境中这些默认值是肯定不能满足我们的需要的。也就是你的服务器有8g 的内存,不对JVM 参数进行设置优化,应用服务器启动时还是按默认值来分配和约束JVM 对内存资源的使用,不会充分的利用所有的内存资源。

结论:“永久存储区溢出(java.lang.OutOfMemoryError:Java Permanent Space)”乃是永久存储区设置太小,不能满足系统需要的大小,此时只需要调整-XX:PermSize 和-XX:MaxPermSize 这两个参数即可。“JVM 堆空间溢出(java.lang.OutOfMemoryError: Java heap space)”错误是JVM 堆空间不足,此时只需要调整-Xms 和-Xmx 这两个参数即可。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容