较小的一半数放在大根堆较大的在小根堆,大根堆堆顶为较小数的最大值,小根堆的堆顶为较大数的最小值
始终保持大根堆和小根堆size相等或者大根堆比小根堆多一
class MedianFinder {
PriorityQueue<Integer> minQueue;
PriorityQueue<Integer> maxQueue;
/** initialize your data structure here. */
public MedianFinder() {
minQueue = new PriorityQueue();
maxQueue = new PriorityQueue(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
});//Collections.reverseOrder()//(o1,o2)->o2-o1
}
public void addNum(int num) {
if(maxQueue.isEmpty() ||num <= maxQueue.peek()){
maxQueue.offer(num);
}else{
minQueue.offer(num);
}
if(maxQueue.size() < minQueue.size()){
maxQueue.offer(minQueue.poll());
}else if(maxQueue.size() > minQueue.size() + 1){
minQueue.offer(maxQueue.poll());
}
}
public double findMedian() {
if(maxQueue.size() == 0 && minQueue.size() == 0)return 0;
if(maxQueue.size() == minQueue.size()){
return (maxQueue.peek() + minQueue.peek()) / 2.0;
}else{
return maxQueue.peek();
}
}
}
public class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
int n = nums.length;
int m = n - k + 1;
double[] res = new double[m];
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(k, Collections.reverseOrder());
PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(k);
for ( int i=0; i<n; i++){
int num = nums[i];
if( maxHeap.size() == 0 || maxHeap.peek() >= num)
maxHeap.add(num);
else minHeap.add(num);
if( minHeap.size() > maxHeap.size() )
maxHeap.add(minHeap.poll());
if( maxHeap.size() > minHeap.size() + 1 )
minHeap.add(maxHeap.poll());
if ( i-k+1 >=0 ){
if( k % 2 == 1 )
res[i- k + 1] = maxHeap.peek();
else
res[i- k + 1] = (maxHeap.peek()/2.0 + minHeap.peek()/2.0);
int toBeRemove = nums[i - k + 1];
if( toBeRemove <= maxHeap.peek())
maxHeap.remove(toBeRemove);
else minHeap.remove(toBeRemove);
if( minHeap.size() > maxHeap.size() )
maxHeap.add(minHeap.poll());
if( maxHeap.size() > minHeap.size() + 1 )
minHeap.add(maxHeap.poll());
}
}
return res;
}
}