NeurIPS 2019 Spotlight | Cascade RPN,结构的艺术带来极致的提升

论文提出Cascade RPN算法来提升RPN模块的性能,该算法重点解决了RPN在迭代时anchor和feature不对齐的问题,论文创新点足,效果也很惊艳,相对于原始的RPN提升13.4%AR

论文:Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution

Introduction


  目前,性能高的目标检测网络大都为two-stage(RPN+R-CNN)架构,相对于R-CNN,很少有研究专门去提升RPN的性能。因此,论文着重研究如何提升RPN的性能,解决其探索性的achor定义以及探索性的feature与anchor对齐的局限性

  anchor由尺寸和长宽比定义,常规算法会使用一系列不同尺寸和长宽比的anchor来充分覆盖检测目标。设定合适的尺寸和长宽比是提升性能的关键,这通常需要一顿tuning

  论文重点强调对齐规则,即图片特征和anchor必须是一致的。如图1a所示,由于RPN的anchor是均匀分布的,其方差十分大,难以学习,需要进行迭代回归。但RPN没有类似RoIPool或RoIAlign的手段进行特征对齐,因为RPN的输入很多,性能十分重要,只能进行常规的滑动卷积进行输出,这就造成了anchor和feature的对称问题。如图2b,可以看到Iterative RPN的收益是微乎其微的,这是由于在iterative RPN中,stage2的anchor与其特征不对齐(依然均匀地卷积),如图1c,stage2的输入anchor精调了,但是stage2卷积时使用的特征区域还是精调之前的

  论文提出Cascade RPN来系统地解决前面提到的问题,算法主要有两个特点:

  • Cascade RPN使用单anchor,并且结合anchor-based和anchor-free的准则来进行正样本的判定
  • 为了获得多stage精调的好处并且保持特征和anchor对齐,Cascade RPN使用自适应卷积来精调每个stage的anchor,自适应卷积可以当作是个轻量级的RoI Align层

  Cascade RPN简单但有效,能比原生RPN高出13.4%AR,并且能集成到two-stage检测器中,如Fast R-CNN和Faster R-CNN分别提升3.1%和3.5%

Region Proposal Network and Variants


  文中简单介绍了RPN的概念,如图1a,通过卷积回归当前anchor与GT间的差值来进行精调,相信大家都比较了解了,这里就不再赘述了

Iterative RPN and Variants

  Iterative RPN的架构如图2b所示,通过迭代回归得出不同stage的差值,然后按顺序对anchor进行精调。从结构来看,如上所述,这样的方法收益是微乎其微的,因为其特征与anchor是不对齐的

  为了缓解对齐问题,一些研究使用可变形卷积来进行特征图上的空间变换,希望能使得精调后的anchor与变换后的特征对齐,如图2cd。但是这种方法并没有严格的约束去保证特征与变换后的anchor对齐,也很难确定变换后的特征和anchor是否对齐了

Cascade RPN

  • Adaptive Convolution

  对于feature map x,标准的二维卷积先通过网格\mathbb{R}={(r_x,r_y)}采样,然后与权重w加权求和。\mathbb{R}由卷积核大小与膨胀(dilation)定义,如\mathbb{R}={(-1, -1), (-1, 0),.....,(0, 1),(1, 1)}对应卷积核大小为3x3和膨胀为1。对于位置p的特征输出y,定义为

  在自适应卷积中,网格\mathbb{R}替换为从输入anchor计算出的偏移\mathbb{O}

  让\overline{a}定义为a在特征图上的精调后的anchor,偏移o可以分解为中心偏移和形状偏移

  其中,o_{ctr}=(\overline{a_x}-p_x, \overline{a_y}-p_y)为中心点偏移量,o_{shp}是形状偏移量,由anchor的形状和卷积核大小决定。假设卷积核大小为3x3,则o_{shp}\in{(-\frac{\overline{a}_w}{2},-\frac{\overline{a}_h}{2}), (-\frac{\overline{a}_w}{2},0),...,(0,\frac{\overline{a}_h}{2}),(\frac{\overline{a}_w}{2},\frac{\overline{a}_h}{2})},由于偏移量是小数,采样时使用双线性插值

  如图3所示,常规卷积连续地采样特征,空洞卷积则根据膨胀按间隔采样特征,可变形卷积则根据学习的偏移来增大采样的空间位置,这是不规则的。而论文提出的自适应卷积则能保证在anchor内进行采样,是规则的,确保特征与anchor对齐

  • Sample Discrimination Metrics

  Cascade RPN每个位置仅使用一个anchor box,然后使用多stage的精调。在判定anchor的正负时,单纯地使用anchor-free或anchor-base方法都是不行的,因为使用anchor-free标准会导致stage2要求太低,而使用anchor-base则会导致stage1不能回归足够多的正样本。因此,Cascade RPN在stage1使用anchor-free标准,即中心点在GT center内即为正,而往后的stage则使用anchor-base标准,根据IoU进行判断

  • Cascade RPN

  Cascade RPN的架构如图2e所示,依靠自适应卷积来对齐特征和anchor。在stage1,自适应卷积可以认为是空洞卷积,因为anchor中心偏移为0,膨胀量根据shape而定。stage1的特征输出会连接到下一个阶段,因为其包含当前anchor的空间信息

  整体流程如公式1,stage1的anchor集合\mathbb{A}^1是均匀分布在图片上的,而在stage\tau,计算出anchor的偏移\omicron^\tau并通过regressor f^\tau计算出回归值\hat{\delta}^\tau,再产生精调的anchora^{\tau+1}。在最后的阶段,通过classifer计算出分类置信度,然后再进行NMS得出最后的结果

  • Learning

  Cascade RPN可以通过多任务的end-to-end方式进行训练,其中L_{reg}^{\tau}是stage\tau回归loss,权重为\alpha^\tauL_{cls}则是分类的loss,两个loss通过\lambda进行权重调整。在实现时,分类使用二值交叉熵而回归使用IoU loss

Experiment


Experimental Setting

  实验的模型以ResNet50-FPN作为主干,每个特征level使用的尺寸为32^2,64^2,128^2,256^2,512^2。FPN采用two-stage,第一阶段使用anchor-free标准,center-region\sigma_{ctr}和ignore-region\sigma_{ign}分别为0.2和0.5,第二阶段使用anchor-based标准,IoU阈值为0.7。multi-task loss的stage-wise权重\alpha^1=\alpha2=1,平衡权重\lambda=10,NMS阈值为0.8。实验将图片等比缩放为[800, 1333],不使用其余数据增强手段,在8GPU上用SGD训练12个epoch,batch 16,初始学习率为0.02,8周期和11周期降低10倍。RPN的性能用AR来衡量,最终的检测结果则以AP进行衡量

Benchmarking Results

Region Proposal Performance.Table1展示了Cascade RPN与state-of-the-art的RPN研究对比,其中Sharp Mask,GCN-NS,AttractionNet,ZIP结果直接从原文里获取,其余用mmdetection复现。Cascade RPN比原始的RPN提升了13.4%AR,由于遵守了对齐规则,Cascade RPN比其它的方法性能都要优异

Detection Performance.Table2展示了集成进two-stage检测器后的整体性能表现,Fast RCNN使用预先计算的anchor进行训练,而Faster RCNN则是end-to-end的。直接替换RPN的实验结果只有很小收益,需要修改一下实验参数,设定IoU阈值为0.65,只取top300 anchor。从结果看来,top300时在两个框架下分别提升了3.5%mAP和3.7%mAP

Ablation Study

Component-wise Analysis.  为了进一步了解Cascade RPN性能,进行了component-wise的实验。baseline是anchors为3的RPN,AR_{1000}为58.3,当anchor为1时,AR_{1000}降到55.8,意味着正样本的大幅减少。而当使用自适应卷积使用时,性能提升为67.8,这意味着对齐在多阶段精调的重要性。混合anchor-free和anchor-based准则带来了0.8%的提升,使用回归统计(对回归差值进行归一化)带来2.9%AR收益,IoU loss带来0.2%的提升

Acquisition of Alignment.  为了研究自适应卷积的性能,进行了Table4实验。从结果可以看出,当仅使用中心偏移时,提升6.1%AR,而当使用中心和形状偏移时,性能达到67.8%

Sample Discrimination Metrics.  Table5展示了采用标准的性能测试,从结果看来,单独使用anchor-free或anchor-based标准是不完美的,同时使用能带来很好的效果

Qualitative Evaluation.  图4的第一和第二行图片为stage1的结果,第三行为stage2的结果,可以看到,stage2的结果要好点

Number of Stages.  Table6展示了stage数量对结果的影响,可以看到2-stage和3-stage性能几乎一样,2-stage是个不错的选择

Extension with Cascade R-CNN.  在Cascade R-CNN上,Cascade RPN能提升0.8%AP

Conclusion


  论文提出优化版的Cascade RPN,该架构能够有效地解决RPN中anchor和feature的对齐问题,相对于原始的RPN,能提升13.4%AR,是个很不错的架构

创作不易,未经允许不得转载~
更多内容请关注个人微信公众号【晓飞的算法工程笔记】

work-life balance.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容