零基础学习大数据路线和方向

给大家介绍一下关于零基础小白如何学习大数据路线和方向的详细解介绍,随着人们对大数据的认识越来越深入,很多零基础人员看到了大数据的未来,也想学习这个前沿技术,踏入时代的领军行业,其大数据本质是:数据挖掘深度和应用广度的结合。对海量数据进行有效的分析和处理,而不单单是数据量大就叫大数据,下面我们一起来看一下吧。

大数据三大学习方向:大数据开发师、大数据架构师、大数据运维师

大数据开发师和大数据架构师必须熟练Hadoop、Spark、Storm等主流大数据平台的核心框架。深入掌握如何编写MapReduce的作业及作业流的管理完成对数据的计算,并能够使用Hadoop提供的通用算法,熟练掌握Hadoop整个生态系统的组件如:Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅助运维系统的开发。【大数据开发学习资料领取方式】:加入大数据技术学习交流扣扣群458345782,私信管理员即可免费领取开发工具以及入门学习资料

通过学习一系列面向开发者的Hadoop、Spark等大数据平台开发技术,掌握设计开发大数据系统或平台的工具和技能,能够从事分布式计算框架如Hadoop、Spark群集环境的部署、开发和管理工作,如性能改进、功能扩展、故障分析等。

大数据运维师只需了解Hadoop、Spark、Storm等主流大数据平台的核心框架,熟悉Hadoop的核心组件:HDFS、MapReduce、Yarn;具备大数据集群环境的资源配置,如网络要求、硬件配置、系统搭建。熟悉各种大数据平台的部署方式,集群搭建,故障诊断、日常维护、性能优化,同时负责平台上的数据采集、数据清洗、数据存储,数据维护及优化。熟练使用Flume、Sqoop等工具将外部数据加载进入大数据平台,通过管理工具分配集群资源实现多用户协同使用集群资源。通过灵活、易扩展的Hadoop平台转变了传统的数据库和数据仓库系统架构,从Hadoop部署实施到运行全程的状态监控,保证大数据业务应用的安全性、快速响应及扩展能力!

选择大数据不同阶段职位要求

数据存储阶段:SQL,oracle,IBM等等都有相关的课程,根据公司的不同,学习好这些企业的开发工具,基本可以胜任此阶段的职位。

数据挖掘清洗筛选:大数据工程师,要学习JAVA,Linux,SQL,Hadoop,数据序列化系统Avro,数据仓库Hive,分布式数据库HBase,数据仓库Hive,Flume分布式日志框架,Kafka分布式队列系统课程,Sqoop数据迁移,pig开发,Storm实时数据处理。学会以上基本可以入门大数据工程师,如果想有一个更好的起点,建议前期学习scala编程,Spark,R语言等基本现在企业里面更专业的技能。

数据分析:一方面是搭建数据分析框架,比如确定分析思路需要营销、管理等理论知识;还有针对数据分析结论提出有指导意义的分析建议。

产品调整:经过分析后的数据交由老板和PM经过协商后进行产品的更新,然后交由程序员进行修改(快消类进行商品的上下架调整)。

接着再来了解大数据需要掌握那些技术

Hadoop核心

(1)分布式存储基石:HDFS

HDFS简介入门演示构成及工作原理解析:数据块,NameNode,DataNode、数据写入与读取过程、数据复制、HA方案、文件类型、HDFS常用设置JavaAPI代码演示

(2)分布式计算基础:MapReduce

MapReduce简介、编程模型、JavaAPI介绍、编程案例介绍、MapReduce调优

(3)Hadoop集群资源管家:YARN

YARN基本架构资源调度过程调度算法YARN上的计算框架

离线计算

(1)离线日志收集利器:Flume

Flume简介核心组件介绍Flume实例:日志收集、适宜场景、常见问题。

(2)离线批处理必备工具:Hive

Hive在大数据平台里的定位、总体架构、使用场景之AccessLog分析HiveDDL&DML介绍视图函数(内置,窗口,自定义函数)表的分区、分桶和抽样优化。

(3)速度更快的Hive:Impala

Impala在大数据架构中的角色架构数据处理过程一般使用步骤:创建表,分区表,查询等常用查询演示:统计,连接等、Impala与Hive的比较常用配置与最佳使用建议(查错,调优等)。

(4)更快更强更好用的MR:Spark

Scala&Spark简介基础Spark编程(计算模型RDD、算子Transformation和Actions的使用、使用Spark制作倒排索引)SparkSQL和DataFrame实例:使用SparkSQL统计页面PV和UV。

实时计算

(1)流数据集成神器:Kafka

Kafka简介构成及工作原理解析4组核心API生态圈代码演示:生产并消费行为日志。

(2)实时计算引擎:SparkStreaming

SparkStreaming简介工作原理解剖编写Streaming程序的一般过程如何部署Streaming程序?如何监控Streaming程序?性能调优。

(3)海量数据高速存取数据库:HBase

HBase简介架构及基本组件HBaseTable设计HBase基本操作访问HBase的几种方式。

大数据ETL

(1)ETL神器:Sqoop,Kettle

数据同步ETL介绍Kettle常用组件介绍、抽取Mysql数据到Hive实战Sqoop介绍、抽取Hive数据到Mysql实战。

(2)任务调度双星:Oozie,Azkaban

ETL与计算任务的统一管理和调度简介Crontab调度的方案自研调度系统的方案开源系统Oozie和Azkaban方案总结与经验分享。

大数据应用与数据挖掘

(1)大数据全文检索引擎:Elasticsearch

全文检索基础知识,ES安装及初级介绍,ES深入理解,使用经验介绍。

(2)数据仓库搭建

为什么要构建大数据平台大数据平台的的经典架构深入剖析“五横一纵”的架构实践知名互联网公司大数据平台架构简介。

(3)数据可视化

什么是数据可视化,数据可视化常用工具与必备技能介,Tableau和ECharts实操讲解ECharts介绍,知名互金公司可视化经验介绍。

(4)算法介绍

介绍数据挖掘,机器学习,深度学习的区别,R语言和python的介绍,逻辑回归算法的介绍与应用,以及主要的推荐算法介绍。

最后了解大数据主要的三大就业方向和十大职位,就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。

职位:1、ETL研发;2、Hadoop开发;3、可视化(前端展现)工具开发;4、信息架构开发;5、数据仓库研究;6、OLAP开发;7、数据科学研究;8、数据预测(数据挖掘)分析;9、企业数据管理;10、数据安全研究。【大数据开发学习资料领取方式】:加入大数据技术学习交流扣扣群458345782,私信管理员即可免费领取开发工具以及入门学习资料

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容

  • Zookeeper用于集群主备切换。 YARN让集群具备更好的扩展性。 Spark没有存储能力。 Spark的Ma...
    Yobhel阅读 7,267评论 0 34
  • 现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己? 首先从字面来了解一下大数...
    Pink_de49阅读 557评论 0 0
  • 当黑色的乌云彻底包围了太阳后,我和一群人也包围了一面墙。刚刚,有人在墙上新贴了一张红纸。红纸黑字,喜讯传来——“要...
    半朽阅读 478评论 9 17
  • 经常有一些初学者不知道怎样提高记忆力,怎样一步一步地进行记忆力训练。逍遥右脑在这里为初学者整理了一个思路,帮助大家...
    逍遥右脑阅读 2,339评论 0 0
  • 刚才的那一幕我真想用手机记录下来,可惜太黑手机拍不了。 九一早就睡着了,就是会经常醒,然后各种翻滚攀爬,刚才他迷迷...
    卖童装童鞋的汤汤阅读 218评论 0 1