通透“包含”除法意义,构建“倍数”关系模型 ——教学设计与课堂展示大赛网络答辩拟设追问问题思考

通透“包含”除法意义,构建“倍数”关系模型

——教学设计与课堂展示大赛网络答辩拟设追问问题思考

江西景德镇基地蒋铭国


准备了几个月的新世纪小学数学第十五届基地教学设计与课堂展示大赛即将拉开网络答辩的序幕。为了更好地完成答辩,我多次观看对方辩友的课堂实录,现就依据教研室单主任的指导以及自己的观课,作如下思考。

对方辩友团队是西安新知小学,执教教师是杨楠老师,课题是北师大版数学教材小学二年级上册第七单元《分一分与除法》中的《快乐的动物》(倍的认识)。

《快乐的动物》一课重点是借助除法的意义,尤其是包含除的“几个几”的理解,认识与理解倍的概念与意义。要实现这个重点,关键就是要把除法的意义理解到位,理解通透。除法的意义包含两大类,一类是等分除,另一类是包含除。包含除的关键是理解“有几个这样的一份”。

本课“画一画、圈一圈、认一认”例中,鸭子有6只,猴子有3只,探求鸭子的只数是猴子的几倍?在课堂中老师用方块的个数来代替猴子和鸭子的只数,引导孩子理解如果把3只猴子看作一份,那6只鸭子看作几份?怎么分?进而理解猴子3个为一份,鸭子也3个为一份。6里面有2个3,也就是6是3的2倍。

课堂中同学与老师的表述都是“6里面有这样的两份”。个人认为这种表述没有突出“一份”的标准性与明确性。倍数关系是一种数量关系,对于低年级孩子可以突出可数性。把3只猴子看成一份,其实也就是把3只猴子看成一个整体,也就是一个单位,或者说是单位一。因此表述为“6里面有2个这样的一份”更加精准。“这样的一份”,指代明确,也适合操作。

这节课核心应该是借助除法的意义来理解倍的概念。那这节课的关键是理解“较大的数是较小数的几倍”。也就是除法里面的包含除,即“有几个几”的理解。但老师在课堂中始终在这一方面没有强调“有几个这样的一份”。只是说了,6里面有2个3,6是3的2倍。这里面老师关键抓什么?个人认为老师关键要抓的就是鸭子的只数里面有“2个这样的一份”。“2个这样的一份”这句话是关键,是老师重点要强调的。但上课老师始终没有强调这一点,只是说:“鸭子的只数有这样的2份”,显得不够到位的。6只鸭子,3只一份,是2份,假设是2个一份的话,它就是3份。有几个几?几个几里面关键强调什么?显然在这里应该强调6里面有“几个这样的一份”。6里面有2个这样的一份,这是核心部分。就这一点来说,对方辩友这节课是没有讲到位的。

于是在追问问题时,我认为可以考虑追问以下两个问题:本课本质核心是什么?在课堂中是如何突破重点与难点的?

个人认为本节课始终没有抓住“2个这样的一份”是一个不足。为什么这样圈呢?因为猴子3只为一份,鸭子也3只为一份。老师在操作教学过程中没有重点突出把握“有几个这样的一份”。孩子没有意识到鸭子的只数“有2个这样的一份”,就没有抓住本质。6÷3=2,是理解除法的意义的抽象模型。在我认为除法的意义模型来得有些快。为什么是6÷3=2,而不是6÷2=3呢?为什么用6÷3=2这个抽象模型来表达是很难理解的。事实上,当我们把“3只”看作一份,一个整体的话,是可以利用度量的观念来理解的。在这里就是将“3只”作为度量的标准去度量“6只”,孩子不难发现度量两次即可。这样一来“包含”除是可以数出来的。 

至于第一个问题:本课本质核心是什么?对方辩友在课堂设计上是有所突破的。但教学中正如上述,还没有完全做到重点突出,准确把握。模型建构是我们数学课堂的重点。在这节课中是没得到充分体现的。那么在课堂上如何构建鸭子的只数是猴子只数的几倍的“倍数关系”模型呢?显然6÷3=2是倍数关系的模型的一种抽象与表达。当我们老师重点抓住“有2个这样的一份”这一句话的时候,就可以重点突出“这样的一份”的理解,“这样的一份”是作为“计份”单位存在的,也就是度量过程中的用来度量的单位与标准,这就是除法算式中的除数。

课堂中同学与老师的表述“有这样的2份”,其中“这样的”“这样的2份”是有歧义的。从语义以及语境上来理解,“这样的”其实是一个省略句,但是一旦省略之后,它就只具有指代的含义,描述性含义被大大削弱。而当我们描述为“有2个这样的一份”时,“这样的一份”无论是指代还是描述,都是具体而准确的,更不存在歧义。

第二个问题:在课堂中是如何突破重点与难点的?我们知道本课是借助除法的意义,体会数量之间的倍数关系。在这节课的前面有两节关于除法算式认识的课,这是第三次出现除法算式的课,而倍的概念是建立在除法的意义基础上的。在这节课上是如何借助除法的意义来构建倍数关系的模型的?在教学中如何理解模型是6÷3=2,而不是6÷2=3。这是有一定难度的。

由物象图到符号表示是一种抽象,由符号表示到算式是进一步抽象。画一画,圈一圈,体现的是解决问题的过程,除法算式体现的是解决问题的结果。如果只是这样摆、画、圈,解决问题的方法就显得麻烦,如果数字大,根本无法操作。所以我们就要用符号来解决,就要利用算式来表达,于是算式模型的建构就显得非常有必要。这个算式模型我们如何去建构,怎样才能让学生很好地去理解?本节课才是除法算式的第三节课,所以6÷3=2的模型的意义,是本节课的难点,该如何突破呢?我们学习最终的目的就是建立除法模型。分一分、摆一摆是方法,但这些方法都只是直观的。而这个模型抽象的最后结果就是我们要学习的抽象模型。

还有一个难点,是意义的理解,什么是倍的意义?这个意义的理解就是通过摆一摆,深入感悟有怎样的关系才是两倍。模型怎么办?除法的意义是根本。在前一节课《小熊开店》中。20元可以买几辆车?不能用总价、单价和数量的概念。我们可以让学生明白20元里有4个5元,就可以买4辆车。所以倍数的意义在于“有几个这样的一份”就是几倍。

综上所述为对方辩友拟设如下网络答辩追问问题:

问题一:这节课核心应该是借助除法的意义,尤其是包含除中“几个几”的思维模式来理解倍的概念、倍的意义。那么在课堂上你是如何突破这一重点难点的?

问题二:倍数关系的抽象算术模型的建立是本节课的难点之一,在这节课中你是如何突破的?同时你又是如何在“鸭子与猴子”教学中防止学生出现6÷2=3以及在“鸭子与狐狸”教学中防止学生出现6÷3=2的呢?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容