基础算法-Union-Find(动态连通性)--加权quick-union

今天是基于Union-Find(动态连通性)的quick-union的优化,称为加权quick-union算法实现。

题目介绍

Union-Find(动态连通性)的题目介绍就不再粘贴了,可以看下之前的文章Union-Find(动态连通性)--quick-union
quick-union算法的问题在于,连接的树的高度可能因输入的数据而出现特别高的情况,就以昨天的例子来说,只需要在最后一步输入9,1或者2,3等,最终都将如下:

动态连通性--加权quick-union.png

实现思路(加权quick-union)

先看下实现思路图:

要解决这种情况改怎么办呢?其实只需要在连接两棵树的时候做些简单的调整即可:每次连接都将小的树连接到大树上面。


quick-union与加权quick-union对比.png

这样就保证了树的最大高度为lgN,从而我们的union算法的时间复杂度也为O(logN)。

实现代码

public class WeightedQuickUnionUF implements QuickUF {

    private int[] id;
    private int[] sz;
    private int count;

    public WeightedQuickUnionUF(int N) {
        count = N;
        id = new int[N];
        sz = new int[N];
        for (int i = 0; i < N; i++) {
            id[i] = i;
            sz[i] = 1;
        }
    }


    @Override
    public int count() {
        return count;
    }

    @Override
    public boolean connected(int p, int q) {
        return find(p) == find(q);
    }

    @Override
    public int find(int p) {
        while (p != id[p]) p = id[p];
        return p;
    }

    @Override
    public void union(int p, int q) {
        int i = find(p);
        int j = find(q);
        if (id[i] == id[j]) return;
        if (sz[i] < sz[j]) {
            id[i] = j;
            sz[j] += sz[i];
        } else {
            id[j] = i;
            sz[i] += sz[j];
        }
        count--;
    }

    public static void main(String[] args) {
        int N = 9;
        WeightedQuickUnionUF quickUnionUF = new WeightedQuickUnionUF(N);
        quickUnionUF.union(1, 5);
        quickUnionUF.union(2, 6);
        quickUnionUF.union(6, 7);
        quickUnionUF.union(4, 8);
        quickUnionUF.union(7, 8);

        StdOut.println(quickUnionUF.count());
        StdOut.println(quickUnionUF.find(0));
        StdOut.println(quickUnionUF.find(4));
        StdOut.println(quickUnionUF.find(6));
        StdOut.println(quickUnionUF.find(3));
        StdOut.println(quickUnionUF.connected(2, 4));
        StdOut.println(quickUnionUF.connected(1, 2));
    }
}

算法相关实现源码地址:https://github.com/xiekq/rubs-algorithms

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351