p.p1
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Code
public class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
if (n == 0) return new ArrayList<>();
if (n == 1) {
List<Integer> list = new ArrayList<>();
list.add(0);
return list;
}
List<Integer>[] degrees = new ArrayList[n];
for (int i = 0; i < degrees.length; i++) {
degrees[i] = new ArrayList<>();
}
for (int i = 0; i < edges.length; i++) {
int a = edges[i][0], b = edges[i][1];
degrees[a].add(b);
degrees[b].add(a);
}
List<Integer> leaves = new ArrayList<>();
for (int i = 0; i < degrees.length; i++) {
if (degrees[i].size() == 1) leaves.add(i);
}
int remain = n;
while (remain > 2) {
int size = leaves.size();
remain -= size;
List<Integer> newLeaves = new ArrayList<>();
for (int i = 0; i < size; i++) {
int leaf = leaves.get(i);
for (int j = 0; j < degrees[leaf].size(); j++) {
int remove = degrees[leaf].get(j);
degrees[remove].remove(Integer.valueOf(leaf));
if (degrees[remove].size() == 1) newLeaves.add(remove);
}
}
leaves = newLeaves;
}
return leaves;
}
}
Solution
找到所有入度为1的节点,这些节点都是叶子节点。通过BFS移除这些节点。剩余所有节点中入度为1的是新的叶子节点。循环直至剩余2个以下的节点为止。