恒星
恒星的定义:本身能够发生热核反应,能够发光发热,最终演化为致密残骸的星体。
恒星的质量必须大,至少8%的太阳质量,否则星体无法产生足够的压力和温度,也就无法发生热核反应。恒星之间的距离通常比较远。恒星的组成: 炽热的气体,主要成分是氢元素,占总质量的70%左右,其次是氮元素,占总质量的20%。
-
恒星的一生:生于星云,死于星云,分为星胚、主序星、红巨星和致密星四个阶段。星胚是恒星的诞生阶段,主序星是恒星的青壮年阶段,红巨星是恒星的衰败阶段,致密星是恒星的死亡阶段。质量大的恒星寿命短,因为反应剧烈。质量小的恒星寿命长,内部反应相对缓慢。
诞生:宇宙中有许多星际灰尘和气体,通常十分稀薄。当这些气体和尘埃达到一定的密度,就会形成星际气体云。当星云的质量达到一定程度时,就会在自身引力的作用下开始崩塌和收缩。其中的物质被挤压,温度也会上升的很高。初始,由于星云内部密度不均匀,密度大的地方加快吸收和收缩,因此,星云会分裂。接下来,星云持续分裂成中型星云和小型星云。小型星云此时的密度很高,吸引更多,于是质量越大。引力变大,于是开始向内收缩,引力势能转化为热能,导致内部产生高温。星云并塌缩成一个球体。此过程大概需要200万年。另分子云团也会向内收缩成恒星。
星胚阶段:原始恒星初步形成后,会在引力的作用下进一步收缩。气体在收缩时会释放热量,自身的温度升高,压力变大,反应生成更多的热能。使得恒星的内核更加炽热。
主序星:恒星的引力势能使内部的温度持续增加,当温度达到1500万开时,热核反应开始,此时恒星开始发光。当恒星内部核聚变释放巨大的能量,向外膨胀爆发形成膨胀压力,与自身向内收缩的向心引力达到平衡,收缩过程停止。因此,内部能够产生核反应的星胚才能形成主序星。
内部核反应层级:第一层级核反应:氢反应成为氦,四个氢聚变为氦。第二层级核反应:当氢所剩不多时,氦聚变为碳,三个氦聚变为碳。以此是氧、氖、钠、镁、硅,最终是铁。太阳最多发生两级核反应并会燃烧完燃料。
按质量划分级别:8%太阳质量的星体无法点燃氢,无法形成恒星。8%35%太阳质量的恒星能点燃氢。35%400%太阳质量的能点燃氦。400%~1000%能点燃?大于1000%的恒星最后会生成铁。
红巨星阶段:当恒星内部发生反应到达第二层级后,释放的能量更多,于是恒星开始膨胀,进入红巨星阶段。此时恒星会膨胀变大,红巨星内部反应持续,当核聚变反应停止了下来,膨胀的红巨星几乎燃烧了燃料,膨胀压无法与收缩压平衡。于是在引力的作用下,红巨星开始坍缩。表面的气体核与中心核发生反弹和爆发。由于中心高温高压,中心核被压成了一个致密的星核,恒星进入 致密星阶段。恒星临终前的爆发称为新星爆发或超新星爆发。
恒星爆炸有两种宿命,一种是成为气体和尘埃。另一种外壳变为星云,内核变为致密星。
致密星阶段:
超新星,就是恒星在爆炸时产生强烈的光,看起来向产生了新的恒星。新星和超新星爆炸是不同的,新星是在恒星表面爆炸,超新星是在恒星内部爆炸。超新星的爆炸会产生许多新的元素。
白矮星,白矮星是恒星的生命接近终点时的产物。当恒星内部反应到原子都无法存在时候,原子周围的电子将变为自由电子,因此原子核被自由电子包围,此时称为简并态。白矮星就在简并态与自身的引力下达到平衡,当简并态无法于引力抗衡时,白矮星继续收缩,进而形成密度更高的中子星,甚至形成黑洞。
中子星,质量大的恒星反应更加剧烈,变成了中子星。电子被巨大的压力压入了原子核,形成了中子。
黑洞,质量更大的恒星反应到终极态时,恒星内部出现较多的铁元素。恒星无法释放出能量与引力平衡,此时开始坍缩。形成黑洞。黑洞的强大引力会将它周围的物质都吸进去,光也无法逃脱。