Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
AC代码
void deal(vector<int>& nums, int k, vector<vector<int>>& ans, map<int, int>& mp) {
vector<int> v;
int i = 0;
while (true) {
if (i == nums.size()) {
if (v.empty()) break;
else {
i = mp[v[v.size() - 1]] + 1;
v.pop_back();
}
}
else if (v.size() != k)
v.push_back(nums[i++]);
if (v.size() == k) {
ans.push_back(v);
v.pop_back();
}
}
}
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> ans{{}};
map<int, int> mp;
for (int i = 0; i < nums.size(); ++i) mp[nums[i]] = i;
for (int i = 0; i < nums.size(); ++i) deal(nums, i + 1, ans, mp);
return ans;
}
};
另解1
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> res(1);
for (int i = 0; i < nums.size(); ++i) {
int size = res.size();
for (int j = 0; j < size; ++j) {
res.push_back(res[j]);
res.back().push_back(nums[i]);
}
}
return res;
}
};
另解2(递归)
void digui(int idx, vector<int> nums, vector<int>& v,
vector<vector<int>>& res) {
if (idx == nums.size()) {
res.push_back(v);
return;
}
digui(idx + 1, nums, v, res);
v.push_back(nums[idx]);
digui(idx + 1, nums, v, res);
v.pop_back();
}
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> res;
vector<int> v;
digui(0, nums, v, res);
return res;
}
};
另解3
vector<int> createSub(vector<int>& nums, int i) {
vector<int> v;
int idx = 0;
while (i != 0) {
if (i & 1) {
v.push_back(nums[idx]);
}
idx++;
i >>= 1;
}
return v;
}
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
int k = 1 << nums.size();
vector<vector<int>> ans;
for (int i = 0; i < k; i++) {
vector<int> v = createSub(nums, i);
ans.push_back(v);
}
return ans;
}
};
总结
自己的思路是从77题中学的,另解参考:https://www.cnblogs.com/grandyang/p/4309345.html