数学一直是我上学时代的最爱,步入社会后发现没有好像没有啥作用,但是读了魔鬼数学后,改变了我的想法。全书从线性、推理、期望值、回归和存在五个方面环环相扣,逐步深入,妙趣横生的指引我们收服数学这头折磨我们的“魔鬼”。
首先是克服畏难心理。这头“魔鬼”并不会打你、咬你,要好好看清它的长相,了解它的功用,这样一来,你便清楚只要学会它的语言,就可以命令它给你服务。虽然很多人觉得数学的符号体系和抽象性让人难以理解,但这一堆高度抽象化的符号,与我们平时的思维并没有什么不同。
其次就需要建立数学和现实生活经验的联系。要解决这个问题,就不能满足于在课堂内的学习,还要增进阅读量,了解科技的前沿发展,并积极思考,力图用已掌握的数学知识来解释现实中遇到的问题,假如,我们在玩押大小、赢筹码的游戏。已经连续7次都是大局,那么第8次出现大的几率是否会更大呢?直觉向我们传递的信息是,连续多次大,那么下一次出现大的几率就高。然而数学告诉我们,每次开局,出现大小的几率都是相同的。前一句如何并不会影响后续的结局。如果不能清醒的认识随机性原理,不信邪的赌徒,或许会因为连续的非理性决策而损失惨重。
像这种导致人们作出非理性判断的直觉还有很多,就像很多人会觉得越有钱就会越快乐,然而,当收入超过生活成本一定程度的时候,人们所获得的满足感(快乐)是递减的,在经济学中叫边际效用递减,在数学领域中,最简单的解释为“非线性思维”。“非线性思维表明,正确的前进方向取决于你所在的位置”。相比较而言,越有钱越快乐就是典型的线性思维,即是指两个变量之间的变化是恒定的,这绝对是种一劳永逸的懒人思维。
数学是一种人类的认知方式和工具,它可以让我们更好地思考,它可以磨炼我们的直觉,让我们的判断更敏锐;它还可以驯服不确定性,让我们更深入的了解世界的结构和逻辑。拥有了数学工具,我们就可以把那些我们想当然的事情看得更透彻,从而做出正确的决策。