R语言绘制Nomogram并进行简单的美化处理

rm(list=ls())##清除之前数据

library(rms)  ###加载rms包#

library(foreign)

library(survival)

library(rmda)

##install.packages("DynNom")

library(DynNom)

setwd("C://Users//zhanglingyu//Desktop//测试")  #设置工作目录

rt<- read.table('测试.txt',header=T,sep="\t")

head(rt)  #查看前5行的数据

str(rt)

##接着对所有变量数据进行打包

ddist <- datadist(rt)  #将数据打包

options(datadist='ddist')

model1<- lrm(rt$fustat ~ Age+Gender+Tau+EMPG+Glu+HCY+VB12+ALB, data =  rt)

summary(model1)

par(mgp=c(1.6,0.6,0),mar=c(2,2,2,2))  ##设置画布

nomogram <- nomogram(model1,fun=function(x)1/(1+exp(-x)), ##逻辑回归计算公式

                    fun.at = c(0.001,0.01,0.05,seq(0.1,0.9,by=0.1),0.95,0.99,0.999),#风险轴刻度

                    funlabel = "Risk of Alzheimer Disease", #风险轴便签

                    lp=T,  ##是否显示系数轴

                    conf.int = F, ##每个得分的置信度区间,用横线表示,横线越长置信度越

                    abbrev = F#是否用简称代表因子变量

)

plot(nomogram,

    #1.变量与图形的占比

    xfrac=.35,

    #2.变量字体加粗

    cex.var=1,

    #3.数轴:字体的大小

    cex.axis=0.8,

    #4.数轴:刻度的长度

    tcl=-0.5,

    #5.数轴:文字与刻度的距离

    lmgp=0.3,

    #6.数轴:刻度下的文字,1=连续显示,2=隔一个显示一个

    label.every=1,

    #7.1个页面有几个数轴(这个可以压缩行间距)

    naxes=13,

    #8.垂直线的颜色.

    col.grid=gray(c(0.8, 0.95)),

    #9.线性预测轴名字

    lplabel="Linear Predictorlp",

    #10变量分数名字

    points.label='Points',

    #11总分名字

    total.points.label='Total Points',

    force.label=F#没啥用TRUE强制标记的每个刻度线都绘制标签,我也没研究明白

)

#运行以展示Nomogram每个变量的分数

model1

##生成改良诺模图

plot(nomogram,col.grid = c("Tomato2","DodgerBlue"))

©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容