GraRep

GraRep: Learning Graph Representations with Global Structural Information

一种基于全局信息的图结点特征向量学习算法

1.背景

DW相关方法,在经验上是有效的,但没有给出损失函数的具体定义。在本论文中,提出了一个明确的损失函数。

GraRep考虑两个信息:

  1. 两个顶点的长距离关系,
  2. 不同的 k-step

2.原理

2.1 Graphs and Their Representations

Definition 1. (Graph):一个信息网络被定义为G =(V,E),其中V是顶点集合,每个代表一个数据对象,E是顶点之间的边集,代表两个数据对象之间的关系。
邻接矩阵 :S 无权重的图中,邻接矩阵中的元素值为0 或者 1 ,0 表示两个顶点无连接、1表示两个顶点有链接;对于有权重的图,e_{i,j}表示从节点v_i 到节点v_j 的权重;在本文中只考虑非负权重情况;
度矩阵:D 表示节点v_i表的个数,由于使用矩阵表示,可该矩阵是一个对角矩阵,可以使用邻接矩阵S 定义


(1-step) probability , transition, matrix
一步概率转移矩阵:

假设: 节点
v_i
v_j
的转移概率,与 节点之间是否链接
S_{i,j}
成正比;
Definition 2. (Graph- Representations -with -Global- Structural- Information)


这里给出来定义节点
v_i
的embedding 向量对应矩阵
W
的每一行;
GraRep考虑两个信息:

  1. 两个顶点的长距离关系,
  2. 不同的 k-step
    k-step 可以获取图的全局结果信息,举例:

    1-step:两个节点直接相连;
    a vs e: a 中两个节点是强链接, e 中两个节点是弱连接;
    2-step:两个节点通过另外一个节点链接;
    b vs f: b 中 A1与A2 共享了很多邻居节点,共享链接越多,节点之间链接越强;
    3-step:两个节点通过另外两个节点链接;
    c vs g
    4-step:两个节点通过另外三个节点链接;
    d vs h

    上图a,节点ABC 的表示可以压缩成图b的形式,由于在计算中都转化为矩阵了,这种说明感觉是多余的。。。

2.2 Loss Function On Graph

k -step 转移概率为:


A_{i,j}^k
表示节点
i
到节点
j
的k -step 转移概率;假设节点
w
c
,定义节点
w
到节点
c
的转移概率是:

k-step loss function:


求导分解后看出,最后的结果是两个向量的乘机,而这两个向量对应图中的两个节点,也就是这个向量表示的节点信息。上面就出现了矩阵分解的过程:
Y=W·C

2.3 Optimization with Matrix Factorization

Y^k 可能为0 ,这里作非零处理;


下面就是SVD分解的过程,直接截图了。

2.4 ALGORITHM

3.源码

4.参考文献

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容