R 数据可视化:双坐标系柱线图

什么是双坐标系柱线图

啥么是双坐标系柱线图呢?就是为了在一张图中展示更丰富的信息,既有柱状图又有折线图。
如果柱状图和折线图的值域不一致,比如柱状图表示的是数量,折线图表示累计百分比,当二者出现在一张图中的时候,值域范围 [0, 1] 折线图就会几乎贴近 x 轴而失去意义。
这时候我们就建立两个坐标轴,柱状图和折线图各自使用各自的量程:Give back to Ceasar what is Ceasar's and to God what is God's

封面效果.png

需要什么样的数据

数据有三列,一列分组信息,两列数值信息。

本例中的两列数值信息分别表示 分组计数百分比累积

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))

> data
  group count percent
1   <10    70    0.70
2 10-15    15    0.85
3 15-20     8    0.93
4 20-25     4    0.97
5 25-30     2    0.99
6   >30     1    1.00

开始作图

1. 添加柱状图

count 列添加柱状图:

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))
# 转换 group 列为 factor 类型,从而横坐标按序显示
data[["group"]] <- factor(data[["group"]], levels = as.character(data[["group"]]))

ggplot(data) + 
    geom_bar(aes(x = group, y = count), stat = "identity", fill = '#168aad')
柱状图.png
2. 添加折线图

percent 列添加折线图:

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))
# 转换 group 列为 factor 类型,从而横坐标按序显示
data[["group"]] <- factor(data[["group"]], levels = as.character(data[["group"]]))

ggplot(data) + 
    geom_bar(aes(x = group, y = count), stat = "identity", fill = '#168aad') +
    geom_line(aes(x = group, y = percent), size = 1, color = '#800080') +
    geom_point(aes(x = group, y = percent), size = 3, shape = 19, color='#800080')

遇到报错:
geom_path: Each group consists of only one observation. Do you need to adjust the group aesthetic?

参考 stackoverflow 的解决办法

For line graphs, the data points must be grouped so that it knows which points to connect. In this case, it is simple -- all points should be connected, so group=1. When more variables are used and multiple lines are drawn, the grouping for lines is usually done by variable.

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))
# 转换 group 列为 factor 类型,从而横坐标按序显示
data[["group"]] <- factor(data[["group"]], levels = as.character(data[["group"]]))

ggplot(data) + 
    geom_bar(aes(x = group, y = count), stat = "identity", fill = '#168aad') +
    geom_line(aes(x = group, y = percent, group = 1), size = 1, color = '#800080') +
    geom_point(aes(x = group, y = percent, group = 1), size = 3, shape = 19, color='#800080')

由于 countpercent 的值域范围不一样,会得到这样的效果:

添加折线-1.png
3. 调整折线图的值域

要想让 countpercent 分别按照自己的值域范围显示,并且呈现在同一个图中,就需要把其中之一的值域范围向另一个做投影,以统一值域范围,相当于 scaling。

这里我们选择将 percentcount 做投影,投影之后新增一列 percent_transform,然后通过改变坐标轴 label 的方式达到保持原指标值域范围的目的:

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))
data[["group"]] <- factor(data[["group"]], levels = as.character(data[["group"]]))
data[["percent_transform"]] = data[["percent"]] / max(data[["percent"]]) * max(data[["count"]])

> data
  group count percent percent_transform
1   <10    70    0.70              49.0
2 10-15    15    0.85              59.5
3 15-20     8    0.93              65.1
4 20-25     4    0.97              67.9
5 25-30     2    0.99              69.3
6   >30     1    1.00              70.0

使用投影之后的列 percent_transform 做折线图:

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))
data[["group"]] <- factor(data[["group"]], levels = as.character(data[["group"]]))
data[["percent_transform"]] = data[["percent"]] / max(data[["percent"]]) * max(data[["count"]])

ggplot(data) + 
    geom_bar(aes(x = group, y = count), stat = "identity", fill = '#168aad') +
    geom_line(aes(x = group, y = percent_transform, group = 1), size = 1, color = '#800080') +
    geom_point(aes(x = group, y = percent_transform, group = 1), size = 3, shape = 19, color='#800080') +
    scale_y_continuous(limits = c(0, max(data[["count"]])), 
                       breaks = c(seq(0, ceiling(max(data[["count"]]) / 10) * 10, 5)), 
                       sec.axis = sec_axis(~./0.99, name = "percent(%)", 
                                           breaks = seq(0, max(data[["count"]]), max(data[["count"]]) / 10), 
                                           labels = paste0(seq(0, 100, 10))))
添加折线-统一值域.png
4. 样式调整

调整 x/y 轴颜色,ticks 颜色:

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))
data[["group"]] <- factor(data[["group"]], levels = as.character(data[["group"]]))
data[["percent_transform"]] = data[["percent"]] / max(data[["percent"]]) * max(data[["count"]])

ggplot(data) + 
    geom_bar(aes(x = group, y = count), stat = "identity", fill = '#168aad') +
    geom_line(aes(x = group, y = percent_transform, group = 1), size = 1, color = '#800080') +
    geom_point(aes(x = group, y = percent_transform, group = 1), size = 3, shape = 19, color='#800080') +
    scale_y_continuous(limits = c(0, max(data[["count"]])), 
                       breaks = c(seq(0, ceiling(max(data[["count"]]) / 10) * 10, 5)), 
                       sec.axis = sec_axis(~./0.99, name = "percent(%)", 
                                           breaks = seq(0, max(data[["count"]]), max(data[["count"]]) / 10), 
                                           labels = paste0(seq(0, 100, 10)))) +
    theme(axis.line.x = element_line(linetype = 1, color = "darkblue", size = 1),
          axis.line.y = element_line(linetype = 1, color = "darkblue", size = 1),
          axis.ticks.x = element_line(color = "darkblue", size = 1),
          axis.ticks.y = element_line(color = "darkblue", size = 1),
          axis.ticks.length = unit(.4, "lines"))
调整坐标轴样式.png

调整主题,样式微调:

data <- data.frame(group = c("<10", "10-15", "15-20", "20-25", "25-30", ">30"),
                   count = c(70, 15, 8, 4, 2, 1),
                   percent = c(0.70, 0.85, 0.93, 0.97, 0.99, 1.00))
data[["group"]] <- factor(data[["group"]], levels = as.character(data[["group"]]))
data[["percent_transform"]] = data[["percent"]] / max(data[["percent"]]) * max(data[["count"]])

ggplot(data) + 
    geom_bar(aes(x = group, y = count), stat = "identity", fill = '#168aad') +
    geom_line(aes(x = group, y = percent_transform, group = 1), size = 1, color = '#800080') +
    geom_point(aes(x = group, y = percent_transform, group = 1), size = 3, shape = 19, color='#800080') +
    scale_y_continuous(limits = c(0, max(data[["count"]])), 
                       breaks = c(seq(0, ceiling(max(data[["count"]]) / 10) * 10, 5)), 
                       sec.axis = sec_axis(~./0.99, name = "percent(%)", 
                                           breaks = seq(0, max(data[["count"]]), max(data[["count"]]) / 10), 
                                           labels = paste0(seq(0, 100, 10)))) +
    theme_minimal() +
    theme(panel.grid.major.x = element_blank(),
          panel.grid.minor.x = element_blank(),
          panel.grid.major.y = element_blank(),
          panel.grid.minor.y = element_blank()) +
    theme(axis.line.x = element_line(linetype = 1, color = "darkblue", size = 1),
          axis.line.y = element_line(linetype = 1, color = "darkblue", size = 1),
          axis.ticks.x = element_line(color = "darkblue", size = 1),
          axis.ticks.y = element_line(color = "darkblue", size = 1),
          axis.ticks.length = unit(.4, "lines")) +
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = paste0("CV% distribution"), x = "group", y = "count")
样式微调.png

欢迎留言、讨论、点赞、转发,转载请注明出处~

相关文章

[1] R 数据可视化:BoxPlot
[2] R 数据可视化:水平渐变色柱状图
[3] R 数据可视化:环形柱状图
[4] R 数据可视化:PCA 主成分分析图

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容